Amanda S Janesick SH (2019) Stem cells and the bird cochlea-where is everybody? Cold Spring Harb Perspect Med 9:a033183. https://doi.org/10.1101/cshperspect.a033183.
Edwin W, Rubel SAF, Stone JS (2013) A brief history of hair cell regeneration research and speculations on the future. Hear Res 297:42–51. https://doi.org/10.1016/j.heares.2012.12.014
Li W, Wu J, Yang J, Sun S, Chai R, Chen ZY, Li H (2015) Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci U S A 112:166–171. https://doi.org/10.1073/pnas.1415901112
Article CAS PubMed Google Scholar
Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Géléoc GS, Edge A, Holt JR, Heller S (2007) Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol 8:18–31. https://doi.org/10.1007/s10162-006-0058-3
Patricia M White AD, Yun Shain Lee, Andrew K Groves, Neil Segil (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–7. https://doi.org/10.1038/nature04849
Chen J, Gao D, Chen J, Hou S, He B, Li Y, Li S, Zhang F, Sun X, Jin Y, Sun L, Yang J (2022) Pseudo-temporal analysis of single-cell RNA sequencing reveals trans-differentiation potential of greater epithelial ridge cells into hair cells during postnatal development of cochlea in rats. Front Mol Neurosci 15:832813. https://doi.org/10.3389/fnmol.2022.832813
Article CAS PubMed PubMed Central Google Scholar
Kubota M, Scheibinger M, Jan TA, Heller S (2021) Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea. Cell Rep 34:108646. https://doi.org/10.1016/j.celrep.2020.108646
Article CAS PubMed PubMed Central Google Scholar
Udagawa T, Atkinson PJ, Milon B, Abitbol JM, Song Y, Sperber M, Huarcaya Najarro E, Scheibinger M, Elkon R, Hertzano R, Cheng AG (2021) Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration. PLoS Biol 19:e3001445. https://doi.org/10.1371/journal.pbio.3001445
Article CAS PubMed PubMed Central Google Scholar
White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–987. https://doi.org/10.1038/nature04849
Article CAS PubMed Google Scholar
van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228. https://doi.org/10.1038/nrm.2017.125
Article CAS PubMed Google Scholar
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M (2022) Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 15:83. https://doi.org/10.1186/s13045-022-01305-4
Article CAS PubMed PubMed Central Google Scholar
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y (2020) Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 5:145. https://doi.org/10.1038/s41392-020-00261-0
Article CAS PubMed PubMed Central Google Scholar
Nicodemou A, Bernátová S, Čeháková M, Danišovič Ľ (2023) Emerging roles of mesenchymal stem/stromal-cell-derived extracellular vesicles in cancer therapy. Pharmaceutics 15 https://doi.org/10.3390/pharmaceutics15051453
Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19. https://doi.org/10.1186/s13578-019-0282-2
Article PubMed PubMed Central Google Scholar
Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319. https://doi.org/10.1186/1471-2164-14-319
Article CAS PubMed PubMed Central Google Scholar
Mittal R, Liu G, Polineni SP, Bencie N, Yan D, Liu XZ (2019) Role of microRNAs in inner ear development and hearing loss. Gene 686:49–55. https://doi.org/10.1016/j.gene.2018.10.075
Article CAS PubMed Google Scholar
Torres L, Juárez U, García L, Miranda-Ríos J, Frias S (2015) External ear microRNA expression profiles during mouse development. Int J Dev Biol 59:497–503. https://doi.org/10.1387/ijdb.150124sf
Article CAS PubMed Google Scholar
Friedman LM, Dror AA, Mor E, Tenne T, Toren G, Satoh T, Biesemeier DJ, Shomron N, Fekete DM, Hornstein E, Avraham KB (2009) MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci U S A 106:7915–7920. https://doi.org/10.1073/pnas.0812446106
Article PubMed PubMed Central Google Scholar
Koffler-Brill T, Noy Y, Avraham KB (2023) The long and short: non-coding RNAs in the mammalian inner ear. Hear Res 428:108666. https://doi.org/10.1016/j.heares.2022.108666
Li XJ, Doetzlhofer A (2020) LIN28B/let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling. Proc Natl Acad Sci U S A 117:22225–22236. https://doi.org/10.1073/pnas.2000417117
Article CAS PubMed PubMed Central Google Scholar
Geng R, Furness DN, Muraleedharan CK, Zhang J, Dabdoub A, Lin V, Xu S (2018) The microRNA-183/96/182 cluster is essential for stereociliary bundle formation and function of cochlear sensory hair cells. Sci Rep 8:18022. https://doi.org/10.1038/s41598-018-36894-z
Article CAS PubMed PubMed Central Google Scholar
Diensthuber M, Oshima K, Heller S (2009) Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features. J Assoc Res Otolaryngol 10:173–190. https://doi.org/10.1007/s10162-009-0161-3
Article PubMed PubMed Central Google Scholar
Kubota M, Heller S (2021) Murine cochlear cell sorting and cell-type-specific organoid culture. STAR Protoc 2:100645. https://doi.org/10.1016/j.xpro.2021.100645
Article CAS PubMed PubMed Central Google Scholar
McLean WJ, Yin X, Lu L, Lenz DR, McLean D, Langer R, Karp JM, Edge ASB (2017) Clonal expansion of Lgr5-positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell Rep 18:1917–1929. https://doi.org/10.1016/j.celrep.2017.01.066
Article CAS PubMed PubMed Central Google Scholar
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113:E968–E977. https://doi.org/10.1073/pnas.1521230113
Article CAS PubMed PubMed Central Google Scholar
Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32. https://doi.org/10.1038/nrm2321
Article CAS PubMed Google Scholar
Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37. https://doi.org/10.1038/s41580-018-0045-7
Article CAS PubMed PubMed Central Google Scholar
Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197. https://doi.org/10.1016/j.tibs.2007.02.006
Article CAS PubMed Google Scholar
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854.
Comments (0)