How the Human Cochlea Moves: Biomechanical Modeling of a Wide, Layered Osseous Spiral Lamina

Ekdale EG (2013) Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8(6):e66624 https://doi.org/10.1371/journal.pone.0066624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raufer S, Idoff C, Zosuls A, Marino G, Blanke N, Bigio IJ et al (2020) Anatomy of the human osseous spiral lamina and cochlear partition bridge: relevance for cochlear partition motion. J Assoc Res Otolaryngol 21(2):171–182 https://doi.org/10.1007/s10162-020-00748-1

Article  PubMed  PubMed Central  Google Scholar 

Fleischer G (1973) Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierkundliche Mitteilungen [Studies on the skeleton of the auditory organ of mammals, including humans]. Mamm Comms 21:131–239

Google Scholar 

Bom Braga GO, Parrilli A, Zboray R, Bulatović M, Wagner F (2023) Quantitative evaluation of the 3D anatomy of the human osseous spiral lamina using microCT. J Assoc Res Otolaryngol 24(4):441–452. https://doi.org/10.1007/s10162-023-00904-3

Article  PubMed  PubMed Central  Google Scholar 

Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A et al (2012) Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec (Hoboken) 295(11):1791–1811 https://doi.org/10.1002/ar.22599

Article  PubMed  Google Scholar 

Stenfelt S, Puria S, Hato N, Goode RL (2003) Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hear Res 181(1):131–143 https://doi.org/10.1016/S0378-5955(03)00183-7

Article  PubMed  Google Scholar 

Raufer S, Guinan JJ, Nakajima HH (2019) Cochlear partition anatomy and motion in humans differ from the classic view of mammals. Proc Natl Acad Sci 116(28):13977–13982 https://doi.org/10.1073/pnas.1900787116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohlloeffel L (1983) Problems in aural sound conduction. In: de Boer E, Viergever MA (eds) Mechanics of hearing: proceedings of the IUTAM/ICA Symposium held at Delft University of Technology, The Netherlands, 13–15 July 1983: Springer, pp 211–7

Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49(4):2-1218 https://doi.org/10.1121/1.1912485

Google Scholar 

Johnstone BM, Taylor KJ, Boyle AJ (1970) Mechanics of the guinea pig cochlea. J Acoust Soc Am 47(2B):504–509 https://doi.org/10.1121/1.1911921

Article  CAS  PubMed  Google Scholar 

Allaire P, Raynor S, Billone M (1974) Cochlear partition stiffness—a composite beam model. J Acoust Soc Am 55(6):1252–1258. https://doi.org/10.1121/1.1914693

Article  CAS  PubMed  Google Scholar 

Steele CR (1974) Behavior of the basilar membrane with pure-tone excitation. J Acoust Soc Am 55(1):148–162 https://doi.org/10.1121/1.1928144

Article  CAS  PubMed  Google Scholar 

Zhang X, Gan RZ (2011) A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng 58(10):3024–3027

PubMed  Google Scholar 

Kim N, Steele CR, Puria S (2013) Superior-semicircular-canal dehiscence: effects of location, shape, and size on sound conduction. Hear Res 301:72–84. https://doi.org/10.1016/j.heares.2013.03.008

Article  PubMed  PubMed Central  Google Scholar 

Kwacz M, Marek P, Borkowski P, Mrowka M (2013) A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery. Biomech Model Mechanobiol 12(6):1243–1261 https://doi.org/10.1007/s10237-013-0479-y

Article  PubMed  Google Scholar 

Koike T, Sakamoto C, Sakashita T, Hayashi K, Kanzaki S, Ogawa K (2012) Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane. Hear Res 283(1–2):117–125

PubMed  Google Scholar 

Borkowski P, Marek P, Niemczyk K, Lachowska M, Kwacz M, Wysocki J (2019) Bone conduction stimulation of the otic capsule: a finite element model of the temporal bone. Acta Bioeng Biomech 21(3):75–86

PubMed  Google Scholar 

Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87(6):2592–2605. https://doi.org/10.1121/1.399052

Article  CAS  PubMed  Google Scholar 

Secchia P, Cho NH, McHugh CI, Tubelli AA, Puria S, Nakajima HH (2024) Towards motion measurements of the human organ of corti using optical coherence tomography. Mechanics of hearing workshop 2024 (MoH 2024). Ann Arbor, Zenodo. https://doi.org/10.5281/zenodo.13381278

Allen JB (1977) Two-dimensional cochlear fluid model: new results. J Acoust Soc Am 61(1):110–119

CAS  PubMed  Google Scholar 

Viergever MA (1978) Basilar membrane motion in a spiral-shaped cochlea. J Acoust Soc Am 64(4):1048–1053 https://doi.org/10.1121/1.382088

Article  CAS  PubMed  Google Scholar 

Thorne M, Salt AN, DeMott JE, Henson MM, Henson OW, Jr Gewalt SL (1999) Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 109(10):1661–8 https://doi.org/10.1097/00005537-199910000-00021

CAS  PubMed  Google Scholar 

Wysocki J (1999) Dimensions of the human vestibular and tympanic scalae. Hear Res 135(1–2):39–46. https://doi.org/10.1016/s0378-5955(99)00088-x

Article  CAS  PubMed  Google Scholar 

Merchant SN, and Nadol JB (2010) Schuknecht’s pathology of the ear. People's Medical Publishing House-USA

Bhatt KA, Liberman MC, Nadol JB (2001) Morphometric analysis of age-related changes in the human basilar membrane. Ann Otol Rhinol Laryngol 110(12):1147–1153 https://doi.org/10.1177/000348940111001212

Article  CAS  PubMed  Google Scholar 

Cho NH, Wang H, Puria S (2022) Cochlear fluid spaces and structures of the gerbil high-frequency region measured using optical coherence tomography (OCT). J Assoc Res Otolaryngol 23(2):195–211. https://doi.org/10.1007/s10162-022-00836-4

Article  PubMed  PubMed Central  Google Scholar 

Edge RM, Evans BN, Pearce M, Richter CP, Hu X, Dallos P (1998) Morphology of the unfixed cochlea. Hear Res 124(1):1–16 https://doi.org/10.1016/S0378-5955(98)00090-2

Article  CAS  PubMed  Google Scholar 

Plassmann W, Peetz W, Schmidt M (2008) The cochlea in gerbilline rodents. Brain Behav Evol 30(1–2):82–102 https://doi.org/10.1159/000118639

Article  Google Scholar 

Dass R, Grewal B, Thapar S (1966) Human stapes and its variations I. General features. J Laryngol Otol 80(1):11–25

CAS  PubMed  Google Scholar 

Hato N, Stenfelt S, Goode RL (2003) Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurootol 8(3):140–152. https://doi.org/10.1159/000069475

Article  PubMed  Google Scholar 

Singal A, Sahni D, Gupta T, Aggarwal A, Gupta AK (2020) Anatomic variability of oval window as pertaining to stapes surgery. Surg Radiol Anat 42:329–335

PubMed  Google Scholar 

Sim JH, Roosli C, Chatzimichalis M, Eiber A, Huber AM (2013) Characterization of stapes anatomy: investigation of human and guinea pig. J Assoc Res Otolaryngol: JARO 14(2):159–173 https://doi.org/10.1007/s10162-012-0369-5

Article  PubMed  PubMed Central  Google Scholar 

Cohen D, Blinder G, Perez R, Raveh D (2005) Standardized computed tomographic imaging and dimensions of the round-window niche. Int Tinnitus J 11(2):158

PubMed  Google Scholar 

Goycoolea MV, Lundman L (1997) Round window membrane. Structure function and permeability: a review. Microsc Res Tech 36(3):201–11. https://doi.org/10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R

CAS  PubMed  Google Scholar 

Guimarães CF, Gasperini L, Marques AP, Reis RL (2020) The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 5(5):351–370

Google Scholar 

Miller CE (1985) Structural implications of basilar membrane compliance measurements. J Acoust Soc Am 77(4):1465–1474

CAS  PubMed 

Comments (0)

No login
gif