Computational approaches for toxicology and Pharmacokinetic properties prediction

Glassman PM, Muzykantov VR (2019) Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J Pharmacol Exp Ther 370(3):570–580

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klaassen CD, Amdur MO (2013) Casarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York

Google Scholar 

Bertram G, Katzung K (2021) Basic & clinical Pharmacology. EGC

Palleria C, Di Paolo A, Giofrè C, Caglioti C, Leuzzi G, Siniscalchi A et al (2013) Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sciences: Official J Isfahan Univ Med Sci 18(7):601–610

Google Scholar 

Obrezanova O (2023) Artificial intelligence for compound pharmacokinetics prediction. Curr Opin Struct Biol 79:102546

Article  CAS  PubMed  Google Scholar 

Zou H, Banerjee P, Leung SSY, Yan X (2020) Application of pharmacokinetic-pharmacodynamic modeling in drug delivery: development and challenges. Front Pharmacol 11:543082

Article  Google Scholar 

Ghayoor A, Kohan HG (2024) Revolutionizing pharmacokinetics: the dawn of AI-powered analysis. J Pharm Pharm Sci 27:12671

Article  PubMed  PubMed Central  Google Scholar 

Almukainzi M, Jamali F, Aghazadeh-Habashi A, Löbenberg R (2016) Disease specific modeling: simulation of the pharmacokinetics of meloxicam and ibuprofen in disease state vs. healthy conditions. Eur J Pharm Biopharm 100:77–84

Article  CAS  PubMed  Google Scholar 

Wright MR (2022) Opportunities and considerations in the application of artificial intelligence to pharmacokinetic prediction. Artificial Intelligence in Drug Design. 461 – 82. https://doi.org/10.1007/978-1-0716-1787-8_21

Shao C, Shao F, Huang S, Sun R, Zhang T (2024) An evolved transformer model for adme/tox prediction. Electronics 13(3):624

Article  CAS  Google Scholar 

Cryan SA, Sivadas N, Garcia-Contreras L (2007) In vivo animal models for drug delivery across the lung mucosal barrier. Adv Drug Deliv Rev 59(11):1133–1151. https://doi.org/10.1016/j.addr.2007.08.023

Article  CAS  PubMed  Google Scholar 

Heller A, Lockwood S, Janes T, Spence D (2018) Technologies for measuring Pharmacokinetic profiles. Annual Rev Anal Chem 11:79–100

Article  CAS  Google Scholar 

Mercuri A, Wu S, Stranzinger S, Mohr S, Salar-Behzadi S, Bresciani M et al (2016) In vitro and in Silico characterisation of tacrolimus released under biorelevant conditions. Int J Pharm 515(1–2):271–280. https://doi.org/10.1016/j.ijpharm.2016.10.020

Article  CAS  PubMed  Google Scholar 

Boobis A, Gundert-Remy U, Kremers P, Macheras P, Pelkonen O (2002) Silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15. Eur J Pharm Sciences: Official J Eur Federation Pharm Sci 17(4–5):183–193. https://doi.org/10.1016/s0928-0987(02)00185-9

Article  CAS  Google Scholar 

Mamada H, Takahashi M, Ogino M, Nomura Y, Uesawa Y (2023) Predictive models based on molecular images and molecular descriptors for drug screening. ACS Omega 8(40):37186–37195. https://doi.org/10.1021/acsomega.3c04073

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaboudi N, Alizadeh AA, Shayanfar A (2022) In Silico models to predict tubular secretion or reabsorption clearance pathway using physicochemical properties and structural characteristics. Xenobiotica 52(4):346–352. https://doi.org/10.1080/00498254.2022.2076632

Article  CAS  PubMed  Google Scholar 

Kaboudi N, Asl SG, Nourani N, Shayanfar A (2024) Solubilization of drugs using beta-cyclodextrin: experimental data and modeling. Ann Pharm Fr 82(4):663–672. https://doi.org/10.1016/j.pharma.2024.02.003

Article  CAS  PubMed  Google Scholar 

Sousa MC, Braga RC, Cintra BA, de Oliveira V, Andrade CH (2013) In Silico metabolism studies of dietary flavonoids by CYP1A2 and CYP2C9. Food Res Int 50(1):102–110

Article  CAS  Google Scholar 

Madden JC, Cronin MT (2006) Structure-based methods for the prediction of drug metabolism. Expert Opin Drug Metab Toxicol 2(4):545–557. https://doi.org/10.1517/17425255.2.4.545

Article  CAS  PubMed  Google Scholar 

Shayanfar S, Shayanfar A (2019) Predicting protein binding of drugs using Abraham parameters: effect of ionization. J Mazandaran Univ Med Sci 29(174):96–105

Google Scholar 

Moal IH, Agius R, Bates PA (2011) Protein–protein binding affinity prediction on a diverse set of structures. Bioinformatics 27(21):3002–3009. https://doi.org/10.1093/bioinformatics/btr513

Article  CAS  PubMed  Google Scholar 

Abbasi WA, Yaseen A, Hassan FU, Andleeb S, Minhas F (2020) ISLAND: in-silico proteins binding affinity prediction using sequence information. BioData Min 13(1):20. https://doi.org/10.1186/s13040-020-00231-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabudi N, Shayanfar A, Acree WE Jr, Jouyban A (2022) Correlation of surface tension of mono-solvents at various temperatures. Liquids 2(4):378–387

Article  CAS  Google Scholar 

Ahn S, Sanchez-Langeling B, Lee JH, Henary M, Bao K, Choi HS (2023) Physicochemical descriptors in biodistribution and clearance of contrast agents. Adv Photonics Res 4(8):2300036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia X, Wang T, Zhu H (2023) Advancing computational toxicology by interpretable machine learning. Environ Sci Technol 57(46):17690–17706. https://doi.org/10.1021/acs.est.3c00653

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kunze A, Huwyler J, Poller B, Gutmann H, Camenisch G (2014) In vitro-in vivo extrapolation method to predict human renal clearance of drugs. J Pharm Sci 103(3):994–1001. https://doi.org/10.1002/jps.23851

Article  CAS  PubMed  Google Scholar 

Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22(1):11–23. https://doi.org/10.1007/s11095-004-9004-4

Article  CAS  PubMed  Google Scholar 

Lombardo F, Obach RS, Varma MV, Stringer R, Berellini G (2014) Clearance mechanism assignment and total clearance prediction in human based upon in Silico models. J Med Chem 57(10):4397–4405. https://doi.org/10.1021/jm500436v

Article  CAS  PubMed  Google Scholar 

Toshimoto K, Wakayama N, Kusama M, Maeda K, Sugiyama Y, Akiyama Y (2014) In Silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors. Drug Metab Dispos 42(11):1811–1819. https://doi.org/10.1124/dmd.114.057893

Article  CAS  PubMed  Google Scholar 

Cruciani G, Pastor M, Guba W (2000) VolSurf: a new tool for the Pharmacokinetic optimization of lead compounds. Eur J Pharm Sciences: Official J Eur Federation Pharm Sci 11(Suppl 2):S29–39. https://doi.org/10.1016/s0928-0987(00)00162-7

Article  CAS  Google Scholar 

Jouyban A, Acree WE Jr, Michael H (2022) Abraham and his developed parameters: various applications in medicine, chemistry and biology. Pharm Sci 28:170–173

Google Scholar 

Groothof D, Post A, Polinder-Bos HA, Erler NS, Flores-Guerrero JL, Kootstra-Ros JE et al (2022) Muscle mass and estimates of renal function: a longitudinal cohort study. J Cachexia Sarcopenia Muscle 13(4):2031–2043. https://doi.org/10.1002/jcsm.12969

Article  PubMed  PubMed Central  Google Scholar 

Groothof D, Post A, Polinder-Bos HA, Kieneker LM, Flores-Guerrero JL, Kootstra-Ros JE et al (2020) Muscle mass heavily influences creatinine-based renal function estimation: a 12-year longitudinal general population-based cohort study. Eur Heart J 41(Supplement2). https://doi.org/10.1093/ehjci/ehaa946.2843

Riphagen IJ, Minović I, Groothof D, Post A, Eggersdorfer ML, Kootstra-Ros JE et al (2020) Methylmalonic acid, vitamin B12, renal function, and risk of all-cause mortality in the general population: results from the prospective Lifelines-MINUTHE study. BMC Med 18(1):380. https://doi.org/10.1186/s12916-020-01853-x

Article  CAS 

Comments (0)

No login
gif