Investigating the Effects of Image Scaling Techniques in Radiographic Measurements of Spinal Alignment and Motion: A Comparative Analysis

Hwang, S.-H., Kayanja, M., Milks, R. A., & Benzel, E. C. (2007). Biomechanical comparison of adjacent segmental motion after ventral cervical fixation with varying angles of lordosis. The Spine Journal, 7(2), 216–221.

Article  PubMed  Google Scholar 

Rustenburg, C. M., Kingma, I., Holewijn, R. M., Faraj, S. S., van der Veen, A., Bisschop, A., et al. (2020). Biomechanical properties in motion of lumbar spines with degenerative scoliosis. Journal of Biomechanics, 102, 109495.

Article  PubMed  Google Scholar 

Santiago, F. R., Ramos-Bossini, A. J. L., Wáng, Y. X. J., & Zúñiga, D. L. (2020). The role of radiography in the study of spinal disorders. Quantitative Imaging in Medicine and Surgery, 10(12), 2322.

Article  Google Scholar 

Goodwin, M. L., Buchowski, J. M., & Sciubba, D. M. (2022). Why X-rays? The importance of radiographs in spine surgery. The Spine Journal, 22(11), 1759–1767.

Article  PubMed  Google Scholar 

Arnone, P. A., McCanse, A. E., Farmen, D. S., Alano, M. V., Weber, N. J., Thomas, S. P., et al. (2024). Plain Radiography: A unique component of spinal assessment and predictive health. Healthcare, 12(6), 663.

White, A. A., III, & Panjabi, M. M. (1990). Clinical Biomechanics of the spine, 2nd Ed. Philadelphia: J.B. Lippincott.

Google Scholar 

Hanley, E. N., Jr. (1995). The indications for lumbar spinal fusion with and without instrumentation. Spine, 20(24 Suppl), 143S–153S.

PubMed  Google Scholar 

Zhao, K., Yang, C., Zhao, C., & An, K.-N. (2005). Assessment of non-invasive intervertebral motion measurements in the lumbar spine. Journal of Biomechanics, 38(9), 1943–1946.

Article  PubMed  Google Scholar 

Pearson, A. M., Spratt, K. F., Genuario, J., McGough, W., Kosman, K., Lurie, J., et al. (2011). Precision of lumbar intervertebral measurements: Does a computer-assisted technique improve reliability? Spine, 36(7), 572–580.

Article  PubMed  Google Scholar 

Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6(4), 284.

Article  Google Scholar 

Bayne, C. O., Krosin, M., & Barber, T. C. (2009). Evaluation of the accuracy and use of x-ray markers in digital templating for total hip arthroplasty. The Journal of arthroplasty, 24(3), 407–413.

Article  PubMed  Google Scholar 

Martini, M. L., Neifert, S. N., Chapman, E. K., Mroz, T. E., & Rasouli, J. J. (2021). Cervical spine alignment in the sagittal axis: a review of the best validated measures in clinical practice. Global Spine Journal, 11(8), 1307–1312.

Article  PubMed  Google Scholar 

Coomer, S. (2025). Benchmarking AI: Comparing a fully automated spinal motion and alignment solution to analyst driven gold standards. Spine Summit. Tampa Bay, FL, United States.

Taylor, M., Hipp, J. A., Gertzbein, S. D., Gopinath, S., & Reitman, C. A. (2007). Observer agreement in assessing flexion-extension X-rays of the cervical spine, with and without the use of quantitative measurements of intervertebral motion. Spine J, 7(6), 654–658, https://doi.org/10.1016/j.spinee.2006.10.017.

Article  PubMed  PubMed Central  Google Scholar 

Ghiselli, G., Wharton, N., Hipp, J. A., Wong, D. A., & Jatana, S. (2011). Prospective analysis of imaging prediction of pseudarthrosis after anterior cervical discectomy and fusion: computed tomography versus flexion-extension motion analysis with intraoperative correlation. Spine, 36(6), 463–468, https://doi.org/10.1097/BRS.0b013e3181d7a81a.

Article  PubMed  Google Scholar 

Schumann, S., Thelen, B., Ballestra, S., Nolte, L.-P., Büchler, P., & Zheng, G. (2014). X-ray image calibration and its application to clinical orthopedics. Medical Engineering and Physics, 36(7), 968–974.

Article  PubMed  Google Scholar 

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., et al. (2012). 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, 30(9), 1323–1341, https://doi.org/10.1016/j.mri.2012.05.001.

Article  PubMed  PubMed Central  Google Scholar 

Berry, S. D., Kroth, P. J., Edgar, H. J., & Warner, T. D. (2021). Developing the minimum dataset for the new Mexico decedent image database. Applied Clinical Informatics, 12(03), 518–527.

Article  Google Scholar 

Shackleford, J. A., Shusharina, N., Verberg, J., Warmerdam, G., Winey, B., Neuner, M., et al. (2012). Plastimatch 1.6-current capabilities and future directions. MICCAI, First International Workshop on Image-Guidance and Multimodal Dose Planning in Radiation Therapy.

McCloskey, E. V., Spector, T. D., Eyres, K. S., Fern, E. D., O’Rourke, N., Vasikaran, S., et al. (1993). The assessment of vertebral deformity: a method for use in population studies and clinical trials [see comments]. Osteoporosis International, 3(3), 138–147, https://doi.org/10.1007/BF01623275.

Article  PubMed  Google Scholar 

Lau, E. M., Chan, H. H., Woo, J., Lin, F., Black, D., Nevitt, M., et al. (1996). Normal ranges for vertebral height ratios and prevalence of vertebral fracture in Hong Kong Chinese: a comparison with American Caucasians. Journal of Bone and Mineral Research, 11(9), 1364–1368, https://doi.org/10.1002/jbmr.5650110922.

Article  PubMed  Google Scholar 

Diacinti, D., Pisani, D., Del Fiacco, R., Francucci, C. M., Fiore, C. E., Frediani, B., et al. (2011). Vertebral morphometry by X-ray absorptiometry: which reference data for vertebral heights? Bone, 49(3), 526–536.

Article  PubMed  Google Scholar 

Hipp, J. A., Grieco, T. F., Newman, P., & Reitman, C. A. (2022). Definition of Normal Vertebral Morphometry Using NHANES-II Radiographs. JBMR Plus, 6(10), e10677, https://doi.org/10.1002/jbm4.10677.

Article  PubMed  PubMed Central  Google Scholar 

Oura, P., Nurkkala, M., Auvinen, J., Niinimäki, J., Karppinen, J., & Junno, J.-A. (2019). The association of body size, shape and composition with vertebral size in midlife–The Northern Finland birth cohort 1966 study. Scientific Reports, 9(1), 3944.

Article  PubMed  PubMed Central  Google Scholar 

Simmonds, A. M., Rampersaud, Y. R., Dvorak, M. F., Dea, N., Melnyk, A. D., & Fisher, C. G. (2015). Defining the inherent stability of degenerative spondylolisthesis: a systematic review. Journal of Neurosurgery: Spine, 23(2), 178–189, https://doi.org/10.3171/2014.11.SPINE1426.

Article  PubMed  Google Scholar 

White, A. A., 3rd, Johnson, R. M., Panjabi, M. M., & Southwick, W. O. (1975). Biomechanical analysis of clinical stability in the cervical spine. Clinical Orthopaedics and Related Research, (109), 85–96.

Luers, P. (2007). Spinal alteration of motion segment integrity. AMA Guides® Newsletter, 12(2), 1–3, 9–11.

Boss, O. L., Tomasi, S. O., Bäurle, B., Sgier, F., & Hausmann, O. N. (2013). Lumbar total disc replacement: correlation of clinical outcome and radiological parameters. Acta Neurochirurgica, 155(10), 1923–1930.

Article  PubMed  Google Scholar 

Cho, B. H., Kaji, D., Cheung, Z. B., Ye, I. B., Tang, R., Ahn, A., et al. (2020). Automated measurement of lumbar lordosis on radiographs using machine learning and computer vision. Global Spine Journal, 10(5), 611–618.

Article  PubMed  Google Scholar 

Rampersaud, R., Fehlings, M., Harrop, J., Kuklo, T., Massicotte, E., Salonen, D., et al. (2006). Validation of digital radiology measurement tools for quantitative spinal imaging. Topics in Spinal Cord Injury Rehabilitation, 12(1), 11–21.

Article  Google Scholar 

Ravi, B., & Rampersaud, R. (2008). Clinical magnification error in lateral spinal digital radiographs. Spine, 33(10), E311–316, https://doi.org/10.1097/BRS.0b013e31816f6c3f.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif