Adams LC, Truhn D, Busch F, Kader A, Niehues SM, Makowski MR, Bressem KK: Leveraging GPT-4 for Post Hoc Transformation of Free-text Radiology Reports into Structured Reporting: A Multilingual Feasibility Study. Radiology 307(4):e230725, 2023. https://doi.org/10.1148/radiol.230725
Nobel JM, Kok EM, Robben SGF: Redefining the structure of structured reporting in radiology. Insights Imaging 11(1):10, 2020. https://doi.org/10.1186/s13244-019-0831-6
Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, Johnson BE, Schrag D: Assessment of Deep Natural Language Processing in Ascertaining Oncologic Outcomes From Radiology Reports. JAMA Oncol 5(10):1421–1429, 2019. https://doi.org/10.1001/jamaoncol.2019.1800
Donnelly LF, Grzeszczuk R, Guimaraes CV, Zhang W, Bisset Iii GS: Using a Natural Language Processing and Machine Learning Algorithm Program to Analyze Inter-Radiologist Report Style Variation and Compare Variation Between Radiologists When Using Highly Structured Versus More Free Text Reporting. Curr Probl Diagn Radiol 48(6):524–530, 2019. https://doi.org/10.1067/j.cpradiol.2018.09.005
Fink MA, Kades K, Bischoff A, Moll M, Schnell M, Kuchler M, Kohler G, Sellner J, Heussel CP, Kauczor HU, Schlemmer HP, Maier-Hein K, Weber TF, Kleesiek J: Deep Learning-based Assessment of Oncologic Outcomes from Natural Language Processing of Structured Radiology Reports. Radiol Artif Intell 4(5):e220055, 2022. https://doi.org/10.1148/ryai.220055
Lyu Q, Tan J, Zapadka ME, Ponnatapura J, Niu C, Myers KJ, Wang G, Whitlow CT: Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential. Vis Comput Ind Biomed Art 6(1):9, 2023. https://doi.org/10.1186/s42492-023-00136-5
Steinkamp JM, Chambers CM, Lalevic D, Zafar HM, Cook TS: Automated Organ-Level Classification of Free-Text Pathology Reports to Support a Radiology Follow-up Tracking Engine. Radiol Artif Intell 1(5):e180052, 2019. https://doi.org/10.1148/ryai.2019180052
Yamashita R, Bird K, Cheung PY, Decker JH, Flory MN, Goff D, Morimoto LN, Shon A, Wentland AL, Rubin DL, Desser TS: Automated Identification and Measurement Extraction of Pancreatic Cystic Lesions from Free-Text Radiology Reports Using Natural Language Processing. Radiol Artif Intell 4(2):e210092, 2022. https://doi.org/10.1148/ryai.210092
Amin KS, Mayes L, Khosla P, Doshi R: ChatGPT-3.5, ChatGPT-4, Google Bard, and Microsoft Bing to Improve Health Literacy and Communication in Pediatric Populations and Beyond. arXiv preprint arXiv:2311.10075, 2023.
Li H, Moon JT, Iyer D, Balthazar P, Krupinski EA, Bercu ZL, Newsome JM, Banerjee I, Gichoya JW, Trivedi HM: Decoding radiology reports: Potential application of OpenAI ChatGPT to enhance patient understanding of diagnostic reports. Clin Imaging 101:137–141, 2023. https://doi.org/10.1016/j.clinimag.2023.06.008
Park J, Oh K, Han K, Lee YH: Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting. Sci Rep 14(1):13218, 2024. https://doi.org/10.1038/s41598-024-63824-z
Amin KS, Davis MA, Doshi R, Haims AH, Khosla P, Forman HP: Accuracy of ChatGPT, Google Bard, and Microsoft Bing for Simplifying Radiology Reports. Radiology 309(2):e232561, 2023. https://doi.org/10.1148/radiol.232561
Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW, Sutton C, Gehrmann S, Schuh P, Shi K, Tsvyashchenko S, Maynez J, Rao A, Barnes P, Tay Y, Shazeer N, Prabhakaran V, Reif E, Du N, Hutchinson B, Pope R, Bradbury J, Austin J, Isard M, Gur-Ari G, Yin PC, Duke T, Levskaya A, Ghemawat S, Dev S, Michalewski H, Garcia X, Misra V, Robinson K, Fedus L, Zhou D, Ippolito D, Luan D, Lim H, Zoph B, Spiridonov A, Sepassi R, Dohan D, Agrawal S, Omernick M, Dai AM, Pillai TS, Pellat M, Lewkowycz A, Moreira E, Child R, Polozov O, Lee K, Zhou ZW, Wang XZ, Saeta B, Diaz M, Firat O, Catasta M, Wei J, Meier-Hellstern K, Eck D, Dean J, Petrov S, Fiedel N: PaLM: Scaling Language Modeling with Pathways. Journal of Machine Learning Research 24, 2023.
Dong Q, Li L, Dai D, Zheng C, Wu Z, Chang B, Sun X, Xu J, Sui Z: A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.
Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, Scales N, Tanwani A, Cole-Lewis H, Pfohl S, Payne P, Seneviratne M, Gamble P, Kelly C, Babiker A, Scharli N, Chowdhery A, Mansfield P, Demner-Fushman D, Aguera YAB, Webster D, Corrado GS, Matias Y, Chou K, Gottweis J, Tomasev N, Liu Y, Rajkomar A, Barral J, Semturs C, Karthikesalingam A, Natarajan V: Large language models encode clinical knowledge. Nature 620(7972):172–180, 2023. https://doi.org/10.1038/s41586-023-06291-2
Wei J, Wang X, Schuurmans D, Bosma M, Xia F, Chi E, Le QV, Zhou D: Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems 35:24824–24837, 2022.
Gu K, Lee JH, Shin J, Hwang JA, Min JH, Jeong WK, Lee MW, Song KD, Bae SH: Using GPT-4 for LI-RADS feature extraction and categorization with multilingual free-text reports. Liver Int, 2024. https://doi.org/10.1111/liv.15891
Faggioni L, Coppola F, Ferrari R, Neri E, Regge D: Usage of structured reporting in radiological practice: results from an Italian online survey. Eur Radiol 27(5):1934–1943, 2017. https://doi.org/10.1007/s00330-016-4553-6
Nobel JM, van Geel K, Robben SGF: Structured reporting in radiology: a systematic review to explore its potential. Eur Radiol 32(4):2837–2854, 2022. https://doi.org/10.1007/s00330-021-08327-5
Nishino M, Jagannathan JP, Ramaiya NH, Van den Abbeele AD: Revised RECIST guideline version 1.1: What oncologists want to know and what radiologists need to know. AJR Am J Roentgenol 195(2):281–289, 2010. https://doi.org/10.2214/AJR.09.4110
van Persijn van Meerten EL, Gelderblom H, Bloem JL: RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline. Eur Radiol 20(6):1456–1467, 2010. https://doi.org/10.1007/s00330-009-1685-y
Sun X, Li X, Li J, Wu F, Guo S, Zhang T, Wang G: Text classification via large language models. arXiv preprint arXiv:2305.08377, 2023.
Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4):1234–1240, 2020.
Alsentzer E, Murphy JR, Boag W, Weng W-H, Jin D, Naumann T, McDermott M: Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323, 2019.
Dettmers T, Pagnoni A, Holtzman A, Zettlemoyer L: Qlora: Efficient finetuning of quantized llms. Advances in Neural Information Processing Systems 36, 2024.
Hanley JA, McNeil BJ: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148(3):839–843, 1983. https://doi.org/10.1148/radiology.148.3.6878708
Hartung MP, Bickle IC, Gaillard F, Kanne JP: How to Create a Great Radiology Report. Radiographics 40(6):1658–1670, 2020. https://doi.org/10.1148/rg.2020200020
Kim S, Lee C-k, Kim S-s: Large Language Models: A Guide for Radiologists. Korean J Radiol 25(2):126–133, 2024.
Elkassem AA, Smith AD: Potential Use Cases for ChatGPT in Radiology Reporting. AJR Am J Roentgenol 221(3):373–376, 2023. https://doi.org/10.2214/AJR.23.29198
Russe MF, Fink A, Ngo H, Tran H, Bamberg F, Reisert M, Rau A: Performance of ChatGPT, human radiologists, and context-aware ChatGPT in identifying AO codes from radiology reports. Sci Rep 13(1):14215, 2023. https://doi.org/10.1038/s41598-023-41512-8
Russe MF, Reisert M, Bamberg F, Rau A, editors: Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning. RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren; 2024: Georg Thieme Verlag KG,
Bhayana R: Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical and Research Applications. Radiology 310(1):e232756, 2024. https://doi.org/10.1148/radiol.232756
Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, Compas C, Martin C, Costa AB, Flores MG, Zhang Y, Magoc T, Harle CA, Lipori G, Mitchell DA, Hogan WR, Shenkman EA, Bian J, Wu Y: A large language model for electronic health records. NPJ Digit Med 5(1):194, 2022. https://doi.org/10.1038/s41746-022-00742-2
Olivato M, Putelli L, Arici N, Gerevini AE, Lavelli A, Serina I: Language Models for Hierarchical Classification of Radiology Reports with Attention Mechanisms, BERT and GPT-4. IEEE Access, 2024.
Voinea Ș-V, Mămuleanu M, Teică RV, Florescu LM, Selișteanu D, Gheonea IA: GPT-Driven Radiology Report Generation with Fine-Tuned Llama 3. Bioengineering 11(10):1043, 2024.
Majdik ZP, Graham SS, Shiva Edward JC, Rodriguez SN, Karnes MS, Jensen JT, Barbour JB, Rousseau JF: Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study. JMIR AI 3:e52095, 2024.
Nori H, Lee YT, Zhang S, Carignan D, Edgar R, Fusi N, King N, Larson J, Li Y, Liu W: Can generalist foundation models outcompete special-purpose tuning? case study in medicine. arXiv preprint arXiv:2311.16452, 2023.
Zhou H, Gu B, Zou X, Li Y, Chen SS, Zhou P, Liu J, Hua Y, Mao C, Wu X: A survey of large language models in medicine: Progress, application, and challenge. arXiv preprint arXiv:2311.05112, 2023.
Kazemnejad A, Padhi I, Natesan Ramamurthy K, Das P, Reddy S: The impact of positional encoding on length generalization in transformers. Advances in Neural Information Processing Systems 36, 2024.
Jha A, Samavedhi A, Rakesh V, Chandrashekar J, Reddy CK: Transformer-based Models for Long-Form Document Matching: Challenges and Empirical Analysis. arXiv preprint arXiv:2302.03765, 2023.
Comments (0)