Automatic Body Region Classification in CT Scans Using Deep Learning

Yeh YC, Weng CH, Huang YJ, Fu CJ, Tsai TT, Yeh CY: Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. Sci Rep 11:7618, 2021

Oh K, Oh IS, Lee DW, et al: Deep anatomical context feature learning for cephalometric landmark detection. IEEE J Biomed Health Inform 25:806–817, 2020

Zhou GQ, Miao J, Yang X, Li R, Huo EZ, Shi W, Huang Y, Qian J, Chen C, Ni D: Learn fine-grained adaptive loss for multiple anatomical landmark detection in medical images. IEEE J Biomed Health Inform 25:3854–3864, 2021

Fang X, Yan P: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans Med Imaging 39:3619–3629, 2020.

Pan S, Chang CW, Wang T, Wynne J, Hu M, Lei Y, Liu T, Patel P, Roper J, Yang X: Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Med Phys 50:3027–3038, 2023

Khan MA, Akram T, Zhang YD, Sharif M: Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework. Pattern Recognit Lett 143:58–66, 2021

Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, Hoi Y, Akino N, Angel E, Madan R, et al: Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. Am J Roentgenol 214:566–573, 2020

Lakhani P, Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582, 2017

Bressem KK, Vahldiek JL, Adams L, Niehues SM, Haibel H, Rodriguez VR, Torgutalp M, Protopopov M, Proft F, Rademacher J, et al: Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance. Arthritis Res Ther 23:1–10, 2021

Lin KYY, Peng C, Lee KH, Chan SCW, Chung HY: Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis. Rheumatology 61:4198–4206, 2022

Bordner A, Aouad T, Lopez Medina C, Yang S, Molto A, Talbot H, Dougados M, Feydy A: A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging. Diagn Interv Imaging 104:373–383, 2023

Zhang L, Jiang B, Wisselink HJ, Vliegenthart R, Xie X: COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images. Br J Radiol 95:20210637, 2022

Aghamohammadi A, Ranjbarzadeh R, Naiemi F, Mogharrebi M, Dorosti S, Bendechache M: TPCNN: two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach. Expert Syst Appl 183:115406, 2021

Gueld MO, Kohnen M, Keysers D, Schubert H, Wein BB, Bredno J, Lehmann TM: Quality of DICOM header information for image categorization. In: Proc SPIE Med Imaging 2002: PACS and Integrated Medical Information Systems: Design and Evaluation 4685:280–287, 2002

McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J: Strategies for reducing radiation dose in CT. Radiol Clin North Am 47:27, 2009

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, et al: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057, 2013

Na S, Sung YS, Ko Y, Shin Y, Lee J, Ha J, Ham SJ, Yoon K, Kim KW: Development and validation of an ensemble artificial intelligence model for comprehensive imaging quality check to classify body parts and contrast enhancement. BMC Med Imaging 22:87, 2022

He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proc IEEE Conf Comput Vis Pattern Recognit 770–778, 2016

Zhao W, Jiang W, Qiu X: Deep learning for COVID-19 detection based on CT images. Sci Rep 11:14353, 2021

Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25, 2012

Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014

Dosovitskiy A: An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020

Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, et al: Searching for MobileNetV3. In: Proc IEEE/CVF Int Conf Comput Vis 1314–1324, 2019

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. In: Proc IEEE Conf Comput Vis Pattern Recognit 4700–4708, 2017

Sugimori H: Classification of computed tomography images in different slice positions using deep learning. J Healthc Eng 2018:1753480, 2018

Ouyang Z, Zhang P, Pan W, Li Q: Deep learning-based body part recognition algorithm for three-dimensional medical images. Med Phys 49:3067–3079, 2022

Raffy P, Pambrun JF, Kumar A, Dubois D, Patti JW, Cairns RA, Young R: Deep learning body region classification of MRI and CT examinations. J Digit Imaging 36:1291–1301, 2023

Li W, Lin HM, Lin A, Napoleone M, Moreland R, Murari A, Stepanov M, Ivanov E, Prasad AS, Shih G, et al: Machine learning classification of body part, imaging axis, and intravenous contrast enhancement on CT imaging. Can Assoc Radiol J 75:82–91, 2024

Manabe K, Asami Y, Yamada T, Sugimori H: Improvement in the convolutional neural network for computed tomography images. Appl Sci 11:1505, 2021

Comments (0)

No login
gif