Development Rate of the Larvae of the Mosquito : A Mathematical Model as Decision Tool

Baril C, Pilling BG, Mikkelsen MJ, Sparrow JM, Duncan CA, Koloski CW, LaZerte SE, Cassone BJ (2023) The influence of weather on the population dynamics of common mosquito vector species in the Canadian Prairies. Parasit Vectors 16:1–14. https://doi.org/10.1186/s13071-023-05760-x

Article  Google Scholar 

Bayoh MN, Lindsay SW (2003) Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res 93(5):375–381. https://doi.org/10.1079/BER2003259

Bellone R, Failloux AB (2020) The role of temperature in shaping mosquito-borne viruses transmission. Front Microbiol 11:584846. https://doi.org/10.3389/fmicb.2020.584846

Article  PubMed  PubMed Central  Google Scholar 

Bieri M, Baumgartner J, Bianchi G, Delucchi V, von Arx R (1983) Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 56:163–171

Google Scholar 

Briere J-F, Pracros P, Le Roux A-Y, Pierre J-S (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28(1):22–29. https://doi.org/10.1093/ee/28.1.22

Campbell A,  Frazer BD, Gilbert  N, Gutierrez  AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11(2):431–438. https://doi.org/10.2307/2402197

Campo A, Picone N, Fernandez AM (2010) Análisis anual de las precipitaciones en la ciudad de Tandil (noviembre 2008–octubre 2009). Estudios Socioterritoriales. Revista de Geografía 8:177–195

Ciota AT, Keyel AC (2019) The role of temperature in transmission of zoonotic arboviruses. Viruses 11(11):1013. https://doi.org/10.3390/v11111013

Article  PubMed  PubMed Central  Google Scholar 

Clements AN (1992) The biology of mosquitoes. Vol 1. Development nutrition and reproduction. Chapman & Hall, Londres. https://doi.org/10.1017/S0007485300034830

Cleophas TJ, Zwinderman AH (2016) Non-parametric tests for three or more samples (Friedman and Kruskal-Wallis). In: Clinical data analysis on a pocket calculator. Springer, Cham. https://doi.org/10.1007/978-3-319-27104-0_34

Contigiani M, Diaz LA, Spinsanti LI, Tauro LB (2016) Investigaciones sobre mosquitos de Argentina. Universidad Nacional de Mar del Plata, Capítulo Arbovirus

Google Scholar 

Damos P, Savopoulou-Soultani M (2008) Temperature-dependent bionomics and modeling of Anarsia lineatella (lepidoptera: gelechiidae) in the laboratory. J Econ Entomol 101(5):1557–1567. https://doi.org/10.1603/0022-0493(2008)101[1557:TBAMOA]2.0.CO;2

Article  CAS  PubMed  Google Scholar 

Damos P, Savopoulou-Soultani M (2012) Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:1–13. https://doi.org/10.1155/2012/123405

Article  Google Scholar 

Docena G, Benítez P, Campos R, Maciá A, Fernández R, Fossati C (1999) Detection of allergens in Aedes albifasciatus mosquito (Diptera: Culicidae) extracts by immunological methods. J Investig Allergol Clin Immunol 9:165–171

CAS  PubMed  Google Scholar 

Drakou K, Nikolaou T, Vasquez M, Petric D, Michaelakis A, Kapranas A, Papatheodoulou A, Koliou M (2020) The effect of weather variables on mosquito activity: a snapshot of the main point of entry of Cyprus. Int J Environ Res Public Health 17:1403. https://doi.org/10.3390/ijerph17041403

Article  PubMed  PubMed Central  Google Scholar 

Echeverry-Cárdenas E, López-Castañeda C, Carvajal-Castro JD, Aguirre-Obando OA (2021) Potential geographic distribution of the tiger mosquito Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) in current and future conditions for Colombia. PLoS Negl Trop Dis 15(5):e0008212. https://doi.org/10.1371/journal.pntd.0008212

Article  PubMed  PubMed Central  Google Scholar 

Fava F, Almeida FL, Almirón WR, Brewer M (2001) Winter biology of Aedes albifasciatus (Diptera: Culicidae) from Córdoba Argentina. J Med Entomol 38(2):253–259. https://doi.org/10.1603/0022-2585-38.2.253

Article  CAS  PubMed  Google Scholar 

Forattini O (2002) Culicidologia médica: identificación biología epidemiología vol 2. EDUSP

Garzón MJ, Schweigmann N (2015) Thermal response in pre-imaginal biology of Ochlerotatus albifasciatus from two different climatic regions. Med Vet Entomol 29:380–386. https://doi.org/10.1111/mve.12128

Article  PubMed  Google Scholar 

Girard M, Nelson CB, Picot V, Gubler DJ (2020) Arboviruses: a global public health threat. Vaccine 38:3989–3994. https://doi.org/10.1016/j.vaccine.2020.04.011

Article  PubMed  PubMed Central  Google Scholar 

Gleiser R, Gorla D, Ludeña Almeida F (1997) Monitoring the abundance of Aedes (Ochlerotatus) albifasciatus (Macquart 1838) (Diptera: Culicidae) to the south of Mar Chiquita Lake central Argentina with the aid of remote sensing. Ann Trop Med Parasitol 91:917–926. https://doi.org/10.1080/00034983.1997.11813219

Article  CAS  PubMed  Google Scholar 

Grech MG, Manzo LM, Epele LB, Laurito M, Claverie AÑ, Ludueña-Almeida FF, Miserendino ML, Almirón WR (2019) Mosquito (Diptera: Culicidae) larval ecology in natural habitats in the cold temperate Patagonia region of Argentina. Parasit Vectors 12:214. https://doi.org/10.1186/s13071-019-3459-y

Article  PubMed  PubMed Central  Google Scholar 

Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 1:1–39

CAS  Google Scholar 

Hilbert D, Logan J (1983) Empirical model of nymphal development for the migratory grasshopper Melanoplus sanguinipes (Orthoptera Acrididae). Environ Entomol 12:1–5. https://doi.org/10.1093/ee/12.1.1

Article  Google Scholar 

Janssen PH, Heuberger PS (1995) Calibration of process-oriented models. Ecol Model 83:55–66. https://doi.org/10.1016/0304-3800(95)00084-9

Article  Google Scholar 

Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM (2018) Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS One 13(12):e0210122. https://doi.org/10.1371/journal.pone.0210122

Article  PubMed  PubMed Central  Google Scholar 

Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) Preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria.  Environ Entomol 33(1):1–11. https://doi.org/10.1603/0046-225X-33.1.1

Lactin DJ, Holliday N, Johnson D, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75. https://doi.org/10.1093/ee/24.1.68

Article  Google Scholar 

Li Y, An Q, Sun Z, Gao X, Wang H (2023) Distribution areas and monthly dynamic distribution changes of three Aedes species in China: Aedes aegypti, Aedes albopictus and Aedes vexans. Parasit Vectors 16(1):297. https://doi.org/10.1186/s13071-023-05878-5

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Xu Y (2022) T-friedman test: a new statistical test for multiple comparison with an adjustable conservativeness measure. Int J Comput Intell Syst 15:29. https://doi.org/10.1007/s44196-022-00083-8

Article  Google Scholar 

Logan J, Wollkind D, Hoyt S, Tanigoshi L (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140. https://doi.org/10.1093/ee/5.6.1133

Article  Google Scholar 

Ludeña Almeida FF, Gorla DE (1995) The biology of Aedes (Ochlerotatus) albifasciatus Macquart 1838 (Diptera: Culicidae) in central Argentina. Mem Inst Oswaldo Cruz 90:463–468. https://doi.org/10.1590/S0074-02761995000400006

Article  Google Scholar 

Organización Mundial de la Salud (2020) Vector-borne diseases. Tech rep WHO Regional Office for South-East Asia. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed Oct 2024

Prosen A, Martínez A, Carcavallo R (1960) La familia Culicidae (Diptera) en la ribera fluvial de la Provincia de Buenos Aires. An Inst Med Reg 5:101–113

Google Scholar 

R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria. https://www.R-project.org/. Accessed Jul 2024

Ramos AG, Fernández G, Valenzuela S, Ricci S (2015) Patrimonio geológico minero y recreación en una ciudad intermedia Tandil Argentina. Rosa Dos Ventos 7:70–86

Article  Google Scholar 

Rossi GC, Mariluis JC, Schnack JA, Spinelli GR (2002) Dípteros vectores (Culicidae y Calliphoridae) de la provincia de Buenos Aires. Pro-Biota Cobiobo

Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR (2019) Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 13(3):e0007213. https://doi.org/10.1371/journal.pntd.0007213

Article  PubMed  PubMed Central  Google Scholar 

Sharpe PJ, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670. https://doi.org/10.1016/0022-5193(77)90265-X

Article  CAS  PubMed  Google Scholar 

Shi P, Ge F, Sun Y, Chen C (2011) A simple model for describing the effect of temperature on insect developmental rate. J Asia Pac Entomol 14:15–20. https://doi.org/10.1016/j.aspen.2010.11.008

Article  Google Scholar 

Stinner R, Gutierrez A, Butler G (1974) An algorithm for temperature-dependent growth rate simulation. Can Entomol 106:519–524. https://doi.org/10.4039/Ent106519-5

Article  Google Scholar 

Vezzani D, Eiras DF, Wisnivesky C (2006) Dirofilariasis in Argentina: historical review and first report of Dirofilaria immitis in a natural mosquito population. Vet Parasitol 136:259–273. https://doi.org/10.1016/j.vetpar.2005.10.026

Article  PubMed  Google Scholar 

Comments (0)

No login
gif