Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438
Article CAS PubMed PubMed Central Google Scholar
Barbosa KBF, Costa NMB, Alfenas R, de CG et al (2010) Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr 23:629–643. https://doi.org/10.1590/S1415-52732010000400013
Barrie Kitto G (1969) [19] Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart: [EC 1.1.1.37 l-Malate: NAD oxidoreductase]. In: Methods in Enzymology. Academic Press, pp 106–116
Blum J, Fridovich I (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys 240:500–508. https://doi.org/10.1016/0003-9861(85)90056-6
Article CAS PubMed Google Scholar
Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31. https://doi.org/10.1016/j.freeradbiomed.2016.04.001
Article CAS PubMed Google Scholar
Brondani M, Ribeiro RT, Pinheiro CV et al (2025) Metformin restores mitochondrial bioenergetics and redox homeostasis through modulation of mitochondrial biogenesis and dynamics in patient derived cultured fibroblasts and an animal model of molybdenum cofactor deficiency. Biomed Pharmacother 187:118123. https://doi.org/10.1016/j.biopha.2025.118123
Article CAS PubMed Google Scholar
Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347
Article CAS PubMed Google Scholar
Cao X, Ding L, Xie Z et al (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer?? Antioxid Redox Signal 31:1–38. https://doi.org/10.1089/ars.2017.7058
Article CAS PubMed PubMed Central Google Scholar
Cardelo Autero N, Cordón Martínez AM, Ramos-Fernández JM (2021) Ethylmalonic encephalopathy: phenotype-genotype description and review of its management. Neurologia 36:729–731. https://doi.org/10.1016/j.nrleng.2021.01.003
Article CAS PubMed Google Scholar
Cardoso GMF, Pletsch JT, Parmeggiani B et al (2017) Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochimica et Biophysica Acta (BBA) 1863:2192–2201. https://doi.org/10.1016/j.bbadis.2017.06.007
Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. https://doi.org/10.1016/s0076-6879(85)13062-4
Article CAS PubMed Google Scholar
Cuadrado A, Rojo AI, Wells G et al (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18:295–317. https://doi.org/10.1038/s41573-018-0008-x
Article CAS PubMed Google Scholar
da Rosa MS, João Ribeiro CA, Seminotti B et al (2015) In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radic Biol Med 83:201–213. https://doi.org/10.1016/j.freeradbiomed.2015.02.008
Article CAS PubMed Google Scholar
de Beus MD, Chung J, Colón W (2004) Modification of cysteine 111 in cu/zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci 13:1347–1355. https://doi.org/10.1110/ps.03576904
Article CAS PubMed PubMed Central Google Scholar
de Moura Alvorcem L, Britto R, Parmeggiani B et al (2019) Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum. Mitochondrion 47:141–150. https://doi.org/10.1016/j.mito.2018.11.001
Article CAS PubMed Google Scholar
de Moura Alvorcem L, Britto R, Cecatto C et al (2021) Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. J Neurochem 158:262–281. https://doi.org/10.1111/jnc.15363
Article CAS PubMed Google Scholar
Di Meo I, Fagiolari G, Prelle A et al (2011) Chronic exposure to sulfide causes accelerated degradation of cytochrome c oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal 15:353–362. https://doi.org/10.1089/ars.2010.3520
Article CAS PubMed Google Scholar
Di Meo I, Lamperti C, Tiranti V (2015) Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Mol Med 7:1257–1266. https://doi.org/10.15252/emmm.201505040
Article CAS PubMed PubMed Central Google Scholar
Di Meo I, Lamperti C, Tiranti V (2017) Ethylmalonic encephalopathy. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)
Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107
Article CAS PubMed PubMed Central Google Scholar
Eisner V, Picard M, Hajnóczky G (2018) Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20:755–765. https://doi.org/10.1038/s41556-018-0133-0
Article CAS PubMed PubMed Central Google Scholar
Ersoy M, Tiranti V, Zeviani M (2020) Ethylmalonic encephalopathy: clinical course and therapy response in an uncommon mild case with a severe ETHE1 mutation. Mol Genet Metab Rep 25:100641. https://doi.org/10.1016/j.ymgmr.2020.100641
Article CAS PubMed PubMed Central Google Scholar
Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. https://doi.org/10.1006/abbi.2001.2292
Article CAS PubMed Google Scholar
Fernandes CG, da Rosa MS, Seminotti B et al (2013) In vivo experimental evidence that the major metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency induce oxidative stress in striatum of developing rats: a potential pathophysiological mechanism of striatal damage in this disorder. Mol Genet Metab 109:144–153. https://doi.org/10.1016/j.ymgme.2013.03.017
Article CAS PubMed Google Scholar
Ferreira CR, van Karnebeek CDM, Vockley J, Blau N (2019) A proposed nosology of inborn errors of metabolism. Genet Med 21(1):102–106. https://doi.org/10.1038/s41436-018-0022-8
Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4
Article CAS PubMed Google Scholar
Frusciante MR, Signori MF, Parmeggiani B et al (2023) Disruption of bioenergetics in the intestine of Wistar rats caused by hydrogen sulfide and thiosulfate: a potential mechanism of chronic hemorrhagic diarrhea in ethylmalonic encephalopathy. Cell Biochem Biophys 81:683–695. https://doi.org/10.1007/s12013-023-01161-0
Article CAS PubMed Google Scholar
Gabriel JL, Plaut GW (1984) Citrate activation of NAD-specific isocitrate dehydrogenase from bovine heart. J Biol Chem 259:1622–1628
Article CAS PubMed Google Scholar
Galiniak S, Biesiadecki M, Mołoń M et al (2023) Serum oxidative and nitrosative stress markers in clear cell renal cell carcinoma. Cancers (Basel) 15:3995. https://doi.org/10.3390/cancers15153995
Comments (0)