Intracerebral Administration of Hydrogen Sulfide Impairs Bioenergetics, Redox Status and Mitochondrial Quality Control in Rat Striatum

Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbosa KBF, Costa NMB, Alfenas R, de CG et al (2010) Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr 23:629–643. https://doi.org/10.1590/S1415-52732010000400013

Article  CAS  Google Scholar 

Barrie Kitto G (1969) [19] Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart: [EC 1.1.1.37 l-Malate: NAD oxidoreductase]. In: Methods in Enzymology. Academic Press, pp 106–116

Blum J, Fridovich I (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys 240:500–508. https://doi.org/10.1016/0003-9861(85)90056-6

Article  CAS  PubMed  Google Scholar 

Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31. https://doi.org/10.1016/j.freeradbiomed.2016.04.001

Article  CAS  PubMed  Google Scholar 

Brondani M, Ribeiro RT, Pinheiro CV et al (2025) Metformin restores mitochondrial bioenergetics and redox homeostasis through modulation of mitochondrial biogenesis and dynamics in patient derived cultured fibroblasts and an animal model of molybdenum cofactor deficiency. Biomed Pharmacother 187:118123. https://doi.org/10.1016/j.biopha.2025.118123

Article  CAS  PubMed  Google Scholar 

Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

Article  CAS  PubMed  Google Scholar 

Cao X, Ding L, Xie Z et al (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer?? Antioxid Redox Signal 31:1–38. https://doi.org/10.1089/ars.2017.7058

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardelo Autero N, Cordón Martínez AM, Ramos-Fernández JM (2021) Ethylmalonic encephalopathy: phenotype-genotype description and review of its management. Neurologia 36:729–731. https://doi.org/10.1016/j.nrleng.2021.01.003

Article  CAS  PubMed  Google Scholar 

Cardoso GMF, Pletsch JT, Parmeggiani B et al (2017) Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochimica et Biophysica Acta (BBA) 1863:2192–2201. https://doi.org/10.1016/j.bbadis.2017.06.007

Article  CAS  Google Scholar 

Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. https://doi.org/10.1016/s0076-6879(85)13062-4

Article  CAS  PubMed  Google Scholar 

Cuadrado A, Rojo AI, Wells G et al (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18:295–317. https://doi.org/10.1038/s41573-018-0008-x

Article  CAS  PubMed  Google Scholar 

da Rosa MS, João Ribeiro CA, Seminotti B et al (2015) In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radic Biol Med 83:201–213. https://doi.org/10.1016/j.freeradbiomed.2015.02.008

Article  CAS  PubMed  Google Scholar 

de Beus MD, Chung J, Colón W (2004) Modification of cysteine 111 in cu/zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci 13:1347–1355. https://doi.org/10.1110/ps.03576904

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Moura Alvorcem L, Britto R, Parmeggiani B et al (2019) Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum. Mitochondrion 47:141–150. https://doi.org/10.1016/j.mito.2018.11.001

Article  CAS  PubMed  Google Scholar 

de Moura Alvorcem L, Britto R, Cecatto C et al (2021) Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. J Neurochem 158:262–281. https://doi.org/10.1111/jnc.15363

Article  CAS  PubMed  Google Scholar 

Di Meo I, Fagiolari G, Prelle A et al (2011) Chronic exposure to sulfide causes accelerated degradation of cytochrome c oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal 15:353–362. https://doi.org/10.1089/ars.2010.3520

Article  CAS  PubMed  Google Scholar 

Di Meo I, Lamperti C, Tiranti V (2015) Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Mol Med 7:1257–1266. https://doi.org/10.15252/emmm.201505040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Meo I, Lamperti C, Tiranti V (2017) Ethylmalonic encephalopathy. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)

Google Scholar 

Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisner V, Picard M, Hajnóczky G (2018) Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20:755–765. https://doi.org/10.1038/s41556-018-0133-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ersoy M, Tiranti V, Zeviani M (2020) Ethylmalonic encephalopathy: clinical course and therapy response in an uncommon mild case with a severe ETHE1 mutation. Mol Genet Metab Rep 25:100641. https://doi.org/10.1016/j.ymgmr.2020.100641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. https://doi.org/10.1006/abbi.2001.2292

Article  CAS  PubMed  Google Scholar 

Fernandes CG, da Rosa MS, Seminotti B et al (2013) In vivo experimental evidence that the major metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency induce oxidative stress in striatum of developing rats: a potential pathophysiological mechanism of striatal damage in this disorder. Mol Genet Metab 109:144–153. https://doi.org/10.1016/j.ymgme.2013.03.017

Article  CAS  PubMed  Google Scholar 

Ferreira CR, van Karnebeek CDM, Vockley J, Blau N (2019) A proposed nosology of inborn errors of metabolism. Genet Med 21(1):102–106. https://doi.org/10.1038/s41436-018-0022-8

Article  PubMed  Google Scholar 

Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4

Article  CAS  PubMed  Google Scholar 

Frusciante MR, Signori MF, Parmeggiani B et al (2023) Disruption of bioenergetics in the intestine of Wistar rats caused by hydrogen sulfide and thiosulfate: a potential mechanism of chronic hemorrhagic diarrhea in ethylmalonic encephalopathy. Cell Biochem Biophys 81:683–695. https://doi.org/10.1007/s12013-023-01161-0

Article  CAS  PubMed  Google Scholar 

Gabriel JL, Plaut GW (1984) Citrate activation of NAD-specific isocitrate dehydrogenase from bovine heart. J Biol Chem 259:1622–1628

Article  CAS  PubMed  Google Scholar 

Galiniak S, Biesiadecki M, Mołoń M et al (2023) Serum oxidative and nitrosative stress markers in clear cell renal cell carcinoma. Cancers (Basel) 15:3995. https://doi.org/10.3390/cancers15153995

Article 

Comments (0)

No login
gif