Multimodal machine learning for Parkinson’s disease diagnosis and genetic subtyping

Chou KL, Martello J, Atem J, Elrod M, Foster ER, Freshwater K, Gunzler SA, Kim H, Mahajan A, Sarva H, Stebbins GT, Lee E, Yang L. Quality improvement in neurology: 2020 Parkinson disease quality measurement set update. Neurology. 2021;97(5):239–45.

Article  Google Scholar 

Ternák G, Németh M, Rozanovic M, Márovics G, Bogár L. Antibiotic consumption patterns in European countries are associated with the prevalence of Parkinson’s disease; the possible augmenting role of the narrow-spectrum penicillin. Antibiotics. 2022. https://doi.org/10.3390/antibiotics11091145.

Article  Google Scholar 

Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583–90.

Article  Google Scholar 

Su D, Cui Y, He C, Yin P, Bai R, Zhu J, et al. Projections for prevalence of Parkinson’s disease and its driving factors in 195 countries and territories to 2050: modelling study of global burden of disease study 2021. BMJ. 2025;388:e080952.

Article  Google Scholar 

Belbasis L, Bellou V, Evangelou E. Environmental and genetic risk factors for Parkinson’s disease, in Diagnosis and Management in Parkinson’s Disease: The Neuroscience of Parkinson’s Disease, Volume 1. 2020. pp. 57–71.

Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, et al. GBA1-associated parkinson’s disease is a distinct entity. Int J Mol Sci. 2024. https://doi.org/10.3390/ijms25137102.

Article  Google Scholar 

Wang F, Feng X, Ma J, Zou H, Chan P. A common A340T variant in PINK1 gene associated with late-onset parkinson’s disease in Chinese. Neurosci Lett. 2006;410(2):121–5.

Article  Google Scholar 

Paul KC, Chuang YH, Shih IF, Keener A, Bordelon Y, Bronstein JM, et al. The association between lifestyle factors and Parkinson’s disease progression and mortality. Mov Disord. 2019;34(1):58–66.

Article  Google Scholar 

Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A. Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol. 2013;28(1):67–77.

Article  Google Scholar 

Lo RY, Tanner CM. Parkinson’s Disease; Epidemiology, in Encyclopedia of the Neurological Sciences. 2014. pp. 833–839.

Zhang J. Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson’s disease. NPJ Parkinsons Dis. 2022;8:1.

Article  Google Scholar 

Dennis A-GP, Strafella AP. The role of AI and machine learning in the diagnosis of Parkinson’s disease and atypical parkinsonisms. Parkinsonism Relat Disord. 2024;126:106986.

Article  Google Scholar 

Shokrpour S, MoghadamFarid A, Bazzaz Abkenar S, Haghi Kashani M, Akbari M, Sarvizadeh M. Machine learning for Parkinson’s disease: a comprehensive review of datasets, algorithms, and challenges. NPJ Parkinsons Dis. 2025;11(1):187.

Article  Google Scholar 

Mohammed MA, Elhoseny M, Abdulkareem KH, Mostafa SA, Maashi MS. A Multi-agent Feature Selection and Hybrid Classification Model for Parkinson’s Disease Diagnosis. ACM Transactions on Multimedia Computing, Communications and Applications, 2021. 17(2s).

Liu Y, Li L, Rao Y, Cao H, Tan X, Li Y. Multi-source sparse broad transfer learning for parkinson’s disease diagnosis via speech. Medical & Biological Engineering & Computing, 2025.

Ganeshnath R, Meenakshy Pillai VJ, Kunju N. A Class Imbalance Learning Approach to Build an Efficient Machine Learning Model for the Diagnosis of Parkinson’s Disease. in 2024 1st International Conference on Trends in Engineering Systems and Technologies, ICTEST 2024. 2024.

Souza R, Stanley EAM, Camacho M, Wilms M, Forkert ND. An analysis of intensity harmonization techniques for Parkinson’s multi-site MRI datasets. in Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 2023.

Sua JN, Lim SY, Yulius MH, Su X, Yapp EKY, Le NQK, et al. Incorporating convolutional neural networks and sequence graph transform for identifying multilabel protein lysine PTM sites. Chemometr Intell Lab Syst. 2020;206:104171.

Article  Google Scholar 

Dadu A, Satone V, Kaur R, Hashemi SH, Leonard H, Iwaki H, Makarious MB, Billingsley KJ, Bandres-Ciga S, Sargent LJ, Noyce AJ, Daneshmand A, Blauwendraat C, Marek K, Scholz SW, Singleton AB, Nalls MA, Campbell RH, Faghri F. Identification and prediction of parkinson’s disease subtypes and progression using machine learning in two cohorts. Volume 8. NPJ Parkinson’s Dis.; 2022. 1.

Makarious MB, Leonard HL, Vitale D, Iwaki H, Sargent L, Dadu A, Violich I, Hutchins E, Saffo D, Bandres-Ciga S, Kim JJ, Song Y, Maleknia M, Bookman M, Nojopranoto W, Campbell RH, Hashemi SH, Botia JA, Carter JF, Craig DW, Van Keuren-Jensen K, Morris HR, Hardy JA, Blauwendraat C, Singleton AB, Faghri F, Nalls MA. Multi-modality machine learning predicting parkinson’s disease. Volume 8. npj Parkinson’s Disease; 2022. p. 35. 1.

Park H, Youm C, Cheon S-M, Kim B, Choi H, Hwang J, et al. Using machine learning to identify Parkinson’s disease severity subtypes with multimodal data. J Neuroeng Rehabil. 2025;22(1):126.

Article  Google Scholar 

Chang Y, Liu J, Sun S, Chen T, Wang R. Deep learning for Parkinson’s disease classification using multimodal and multi-sequences PET/MR images. EJNMMI Res. 2025;15(1):55.

Article  Google Scholar 

Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst, 2017. 30.

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

Article  Google Scholar 

Martínez-Martín P, Gil-Nagel A, Gracia LM, Gómez JB, Martínez-Sarriés J, Bermejo F. The cooperative Multicentric, Unified parkinson’s disease rating scale characteristics and structure. Mov Disord. 1994;9(1):76–83.

Article  Google Scholar 

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.

Article  MATH  Google Scholar 

Le N-Q-K, Ou Y-Y. Incorporating efficient radial basis function networks and significant amino acid pairs for predicting GTP binding sites in transport proteins. BMC Bioinformatics. 2016;17(19):501.

Article  Google Scholar 

Prime M, McKay JL, Bay AA, Hart AR, Kim C, Abraham A, et al. Differentiating Parkinson disease subtypes using clinical balance measures. J Neurol Phys Ther. 2020. https://doi.org/10.1097/NPT.0000000000000297.

Article  Google Scholar 

Alomari MA, Khalil H, Khabour OF, Alzoubi KH. Lipid profile in Parkinson’s disease: the potential role of brain-derived neurotrophic factor. Life Sci. 2022;311:121144.

Article  Google Scholar 

Stojkovska I, Krainc D, Mazzulli JR. Molecular mechanisms of α-synuclein and GBA1 in parkinson’s disease. Cell Tissue Res. 2018;373(1):51–60.

Article  Google Scholar 

Hedrich K, Winkler S, Hagenah J, Kabakci K, Kasten M, Schwinger E, Volkmann J, Pramstaller PP, Kostic V, Vieregge P, Klein C. Recurrent LRRK2 (Park8) mutations in early-onset parkinson’s disease. Mov Disord. 2006;21(9):1506–10.

Article  Google Scholar 

Dunk D, Mulryan P, Affonso S, O’Keeffe GW, O’Keeffe M, Sullivan AM. Diet quality, sleep and quality of life in Parkinson’s disease: a cross-sectional study. Ir J Med Sci (1971 -). 2023;192(3):1371–80.

Article  Google Scholar 

Comments (0)

No login
gif