Minikh, V.B., Basic aspects of selenium metabolism and selenoprotein biosynthesis in the human body, Usp. Biol. Khim., 2022, vol. 62, pp. 369—390.
Ferreira, R.R., Carvalho, R.V., Coelho, L.L., et al., Current understanding of human polymorphism in selenoprotein genes: a review of its significance as a risk biomarker, Int. J. Mol. Sci., 2024, vol. 25, no. 3, p. 1402. https://doi.org/10.3390/ijms25031402
Article CAS PubMed PubMed Central Google Scholar
Köhrle, J., The trace element selenium and the thyroid gland, Biochimie, 1999, vol. 81, pp. 527—533. https://doi.org/10.1016/s0300-9084(99)80105-9
Köhrle, J., Selenium, iodine and iron-essential trace elements for thyroid hormone synthesis and metabolism, Int. J. Mol. Sci., 2023, vol. 24, no. 4, p. 3393. https://doi.org/10.3390/ijms24043393
Article CAS PubMed PubMed Central Google Scholar
Parajuli, R.P., Goodrich, J.M., Chan, L.H.M., et al., Genetic polymorphisms are associated with exposure biomarkers for metals and persistent organic pollutants among Inuit from the Inuvialuit settlement region, Canada, Sci. Total Environ., 2018, vol. 634, pp. 569—578. https://doi.org/10.1016/j.scitotenv.2018.03.331
Article CAS PubMed Google Scholar
Yao, Y., Pei, F., and Kang, P., Selenium, iodine, and the relation with Kashin—Beck disease, Nutrition, 2011, vol. 27, pp. 1095—1100. https://doi.org/10.1016/j.nut.2011.03.002
Article CAS PubMed Google Scholar
White, L., Romagne, F., Muller, E., et al., Genetic adaptation to levels of dietary selenium in recent human history, Mol. Biol. Evol., 2015, vol. 32, pp. 1507—1518. https://doi.org/10.1093/molbev/msv043
Article CAS PubMed Google Scholar
Cornelis, M.C., Fornage, M., Foy, M., et al., Genome-wide association study of selenium concentrations, Hum. Mol. Genet., 2015, vol. 24, pp. 1469—1477. https://doi.org/10.1093/hmg/ddu546
Article CAS PubMed Google Scholar
Agamy, O., Ben Zeev, B., Lev, D., et al., Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy, Am. J. Hum. Genet., 2010, vol. 87, pp. 538—544. https://doi.org/10.1016/j.ajhg.2010.09.007
Article CAS PubMed PubMed Central Google Scholar
Alfthan, G., Xu, G.L., Tan, W.H., et al., Selenium supplementation of children in a selenium-deficient area in China: blood selenium levels and glutathione peroxidase activities, Biol. Trace Elem. Res., 2000, vol. 73, pp. 113—125. https://doi.org/10.1385/BTER:73:2:113
Article CAS PubMed Google Scholar
Xiong, Y.M., Zou, X.Z., Chen, Q., et al., Relationship between Gpx1 Pro198leu polymorphism and susceptibility of Kashin—Beck disease, Value Health, 2015, vol. 18, p. A638. https://doi.org/10.1016/j.jval.2015.09.2270
Yu, F.F., Sun, L., Zhou, G.Y., et al., Meta-analysis of association studies of selenoprotein gene polymorphism and Kashin—Beck disease: an updated systematic review, Biol. Trace Elem. Res., 2022, vol. 200, no. 2, pp. 543—550. https://doi.org/10.1007/s12011-021-02705-2
Article CAS PubMed Google Scholar
Golubkina, N.A. and Papazyan, T.T., Selen v pitanii: rasteniya, zhivotnye, chelovek (Selenium in Nutrition: Plants, Animals, Humans), Moscow: Pechatnyi Gorod, 2006.
Sindireva, A.V., Erdenetsogt, E., Golubkina, N.A., and Gur’ev, N.E., Integral’nyi podkhod k normirovaniyu deistviya selena v sisteme pochva-rastenie-zhivotnoe dlya razrabotki nauchno-obosnovannoi profilaktiki mikroelementozov v regionakh Rossii i Mongolii (An Integrated Approach to Standardizing the Action of Selenium in the Soil—Plant—Animal System for the Development of Scientifically Based Prevention of Microelementoses in the Regions of Russia and Mongolia), Omsk: KAN, 2024.
Pobilat, A.E. and Voloshin, E.I., Patterns of selenium content in the soil—plant system (a review), Vestn. Krasnodar. Gos. Agrar. Univ., 2020, no. 11, pp. 98—105. https://doi.org/10.36718/1819-4036-2020-11-98-105.
Zorina, D.Yu. and Batsevich, V.A., Microelement status of the Arctic indigenous population (Chukchi and Eskimos) based on hair analysis, Vestn. Mosk. Univ., Ser. 23: Anthropol., 2011, no. 4, pp. 105—111.
Little, M., Achouba, A., Ayotte, P., and Lemire, M., Emerging evidence on selenoneine and its public health relevance in coastal populations: a review and case study of dietary Se among Inuit populations in the Canadian Arctic, Nutr. Res. Rev., 2024, vol. 37, pp. 1—10. https://doi.org/10.1017/S0954422424000039
Achouba, A., Dumas, P., Ouellet, N., et al., Selenoneine is a major selenium species in beluga skin and red blood cells of Inuit from Nunavik, Chemosphere, 2019, vol. 229, pp. 549—558. https://doi.org/10.1016/j.chemosphere.2019.04.191
Article CAS PubMed Google Scholar
Foster, C.B., Aswath, K., Chanock, S.J., et al., Polymorphism analysis of six selenoprotein genes: support for a selective sweep at the glutathione peroxidase 1 locus (3p21) in Asian populations, BMC Genet., 2006, vol. 7, p. 56. https://doi.org/10.1186/1471-2156-7-56
Article CAS PubMed PubMed Central Google Scholar
Engelken, J., Espadas, G., Mancuso, F.M., et al., Signatures of evolutionary adaptation in quantitative trait loci influencing trace element homeostasis in liver, Mol. Biol. Evol., 2016, vol. 33, pp. 738—754. https://doi.org/10.1093/molbev/msv267
Article CAS PubMed Google Scholar
Kumar, L., Chowdhari, A., Sequeira, J.J., et al., Genetic affinities and adaptation of the South-West coast populations of India, Genome Biol. Evol., 2023, vol. 15, p. 225. https://doi.org/10.1093/gbe/evad225
Santesmasses, D. and Gladyshev, V.N., Pathogenic variants in selenoproteins and selenocysteine biosynthesis machinery, Int. J. Mol. Sci., 2021, vol. 22, no. 21, p. 11593. https://doi.org/10.3390/ijms222111593
Article CAS PubMed PubMed Central Google Scholar
Cardona, A., Pagani, L., Antao, T., et al., Genome-wide analysis of cold adaption in indigenous Siberian populations, PLoS One, 2014, vol. 9, no. 5, p. e98076. https://doi.org/10.1371/journal.pone.0098076
Article CAS PubMed PubMed Central Google Scholar
Hallmark, B., Karafet, T.M., Hsieh, P., et al., Genomic evidence of local adaptation to climate and diet in indigenous Siberians, Mol. Biol. Evol., 2019, vol. 36, pp. 315—327. https://doi.org/10.1093/molbev/msy211
Article CAS PubMed Google Scholar
Kolesnikov, N.A., Kharkov, V.N., Zarubin, A.A., et al., Signals of directed selection in the indigenous populations of Siberia, Russ. J. Genet., 2022, vol. 58, pp. 473—477. https://doi.org/10.1134/S102279542204007X
Ermakov, V.V., The concept of biogeochemical provinces by A. P. Vinogradov and its development, Geokhimiya, 2017, no. 10, pp. 875—890. https://doi.org/10.7868/S0016752517100041
Pagani, L., Lawson, D.J., Jagoda, E., et al., Genomic analyses inform on migration events during the peopling of Eurasia, Nature, 2016, vol. 538, pp. 238—242. https://doi.org/10.1038/nature19792
Article CAS PubMed PubMed Central Google Scholar
Bang, J., Kang, D., Jung, J., et al., SEPHS1: its evolution, function and roles in development and diseases, Arch. Biochem. Biophys., 2022, vol. 730, p. 109426. https://doi.org/10.1016/j.abb.2022.109426
Article CAS PubMed PubMed Central Google Scholar
Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Watterson, G.A., The homozygosity test after a change in population size, Genetics, 1986, vol. 112, pp. 899—907. https://doi.org/10.1093/genetics/112.4.899
Article CAS PubMed PubMed Central Google Scholar
Slatkin, M., A correction to the exact test based on the Ewens sampling distribution, Genet. Res., 1996, vol. 68, pp. 259—260. https://doi.org/10.1017/s0016672300034236
Article CAS PubMed Google Scholar
Yi, X., Liang, Y., Huerta-Sanchez, E., et al., Sequencing of 50 human exomes reveals adaptation to high altitude, Science, 2010, vol. 329, pp. 75—78. https://doi.org/10.1126/science.1190371
Article CAS PubMed PubMed Central Google Scholar
Fumagalli, M., Moltke, I., Grarup, N., et al., Greenlandic Inuit show genetic signatures of diet and climate adaptation, Science, 2015, vol. 349, pp. 1343—1347. https://doi.org/10.1126/science.aab2319
Comments (0)