Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms

Goetz CG. Amyotrophic lateral sclerosis: early contributions of Jean-Martin Charcot. Muscle Nerve. 2000;23:336–43.

Article  CAS  PubMed  Google Scholar 

van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet. 2017;390:2084–98.

Article  PubMed  Google Scholar 

Huisman MH, de Jong SW, van Doormaal PT, Weinreich SS, Schelhaas HJ, van der Kooi AJ, de Visser M, Veldink JH, van den Berg LH. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J Neurol Neurosurg Psychiatry. 2011;82:1165–70.

Article  PubMed  Google Scholar 

Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E. Eurals: Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2010;81:385–90.

Article  PubMed  Google Scholar 

Wittie M, Nelson LM, Usher S, Ward K, Benatar M. Utility of capture-recapture methodology to assess completeness of amyotrophic lateral sclerosis case ascertainment. Neuroepidemiology. 2013;40:133–41.

Article  PubMed  Google Scholar 

Mehta P, Raymond J, Punjani R, Han M, Larson T, Kaye W, Nelson LM, Topol B, Muravov O, Genson C, Horton DK. Prevalence of amyotrophic lateral sclerosis in the United States using established and novel methodologies. Amyotroph Lateral Scler Frontotemporal Degener. 2017;2022:1–9.

Google Scholar 

Mehta P, Raymond J, Punjani R, Larson T, Bove F, Kaye W, Nelson LM, Topol B, Han M, Muravov O, et al. Prevalence of amyotrophic lateral sclerosis (ALS), United States, 2016. Amyotroph Lateral Scler Frontotemporal Degener. 2022;23:220–5.

Article  PubMed  Google Scholar 

Gordon PH, Mehal JM, Holman RC, Rowland LP, Rowland AS, Cheek JE. Incidence of amyotrophic lateral sclerosis among American Indians and Alaska natives. JAMA Neurol. 2013;70:476–80.

Article  PubMed  Google Scholar 

Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol. 2019;32:771–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Toole O, Traynor BJ, Brennan P, Sheehan C, Frost E, Corr B, Hardiman O. Epidemiology and clinical features of amyotrophic lateral sclerosis in Ireland between 1995 and 2004. J Neurol Neurosurg Psychiatry. 2008;79:30–2.

Article  CAS  PubMed  Google Scholar 

Zhou S, Zhou Y, Qian S, Chang W, Wang L, Fan D. Amyotrophic lateral sclerosis in Beijing: Epidemiologic features and prognosis from 2010 to 2015. Brain Behav. 2018;8:e01131.

Article  PubMed  PubMed Central  Google Scholar 

Palese F, Sartori A, Verriello L, Ros S, Passadore P, Manganotti P, Barbone F, Pisa FE. Epidemiology of amyotrophic lateral sclerosis in Friuli-Venezia Giulia, North-Eastern Italy, 2002–2014: a retrospective population-based study. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:90–9.

Article  PubMed  Google Scholar 

Benjaminsen E, Alstadhaug KB, Gulsvik M, Baloch FK, Odeh F. Amyotrophic lateral sclerosis in Nordland county, Norway, 2000–2015: prevalence, incidence, and clinical features. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19:522–7.

Article  PubMed  Google Scholar 

Mulder DW, Kurland LT, Offord KP, Beard CM. Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology. 1986;36:511–7.

Article  CAS  PubMed  Google Scholar 

Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539:197–206.

Article  PubMed  PubMed Central  Google Scholar 

Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17–23.

Article  CAS  PubMed  Google Scholar 

Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3:17071.

Article  PubMed  Google Scholar 

Eisen A. The dying forward hypothesis of ALS: tracing its history. Brain Sci. 2021;11(3):300.

Baker MR. ALS–dying forward, backward or outward? Nat Rev Neurol. 2014;10:660.

Article  PubMed  PubMed Central  Google Scholar 

Haidar M, Viden A, Cuic B, Wang T, Rosier M, Tomas D, Mills SA, Govier-Cole A, Djouma E, Luikinga S, et al: Cortical hyperexcitability drives dying forward ALS symptoms and pathology in mice. bioRxiv 2021:2021.2008.2013.456320.

Vucic S, Nicholson GA, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain. 2008;131:1540–50.

Article  PubMed  Google Scholar 

Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006;129:2436–46.

Article  PubMed  Google Scholar 

Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SS, Sandoe J, Perez NP, Williams LA, Lee S, Boulting G, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 2014;7:1–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menon P, Kiernan MC, Vucic S. Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clin Neurophysiol. 2015;126:803–9.

Article  PubMed  Google Scholar 

Tankisi H, Nielsen CS, Howells J, Cengiz B, Samusyte G, Koltzenburg M, Blicher JU, Moller AT, Pugdahl K, Fuglsang-Frederiksen A, et al. Early diagnosis of amyotrophic lateral sclerosis by threshold tracking and conventional transcranial magnetic stimulation. Eur J Neurol. 2021;28:3030–9.

Article  PubMed  PubMed Central  Google Scholar 

Fogarty MJ, Noakes PG, Bellingham MC. Motor cortex layer V pyramidal neurons exhibit dendritic regression, spine loss, and increased synaptic excitation in the presymptomatic hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Neurosci. 2015;35:643–7.

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Hughes EG, Shetty AS, Arlotta P, Goff LA, Bergles DE, Brown SP. Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease. J Neurosci. 2017;37:9037–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Silva ML, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, Zytnicki D, Manuel M. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. Elife. 2018;7:e30955.

Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince PG, Shaw PJ. Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol. 2013;125:95–109.

Article  CAS  PubMed  Google Scholar 

Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol. 2017;133:863–85.

Article  PubMed  PubMed Central  Google Scholar 

Jara JH, Sheets PL, Nigro MJ, Peric M, Brooks C, Heller DB, Martina M, Andjus PR, Ozdinler PH. The electrophysiological determinants of corticospinal motor neuron vulnerability in ALS. Front Mol Neurosci. 2020;13:73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting complexity: the role of motor circuit elements in ALS pathophysiology. Front Neurosci. 2020;14:573.

Article  PubMed  PubMed Central  Google Scholar 

Munoz-Castaneda R, Zingg B, Matho KS, Chen X, Wang Q, Foster NN, Li A, Narasimhan A, Hirokawa KE, Huo B, et al. Cellular anatomy of the mouse primary motor cortex. Nature. 2021;598:159–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geevasinga N, Menon P, Ozdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol. 2016;12:651–61.

Article  CAS  PubMed  Google Scholar 

Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330:585–91.

Article  CAS  PubMed  Google Scholar 

Abe K, Itoyama Y, Sobue G, Tsuji S, Aoki M, Doyu M, Hamada C, Kondo K, Yoneoka T, Akimoto M, et al. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:610–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song JH, Huang CS, Nagata K, Yeh JZ, Narahashi T. Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther. 1997;282:707–14.

CAS  PubMed  Google Scholar 

Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther. 2011;17:4–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debono MW, Le Guern J, Canton T, Doble A, Pradier L. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol. 1993;235:283–9.

Comments (0)

No login
gif