The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007). This work describes the ENCODE project aiming to identify all functional elements of the human genome, especially ncRNAs.
Article PubMed Central Google Scholar
ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306, 636–640 (2004).
Kapranov, P., Willingham, A. T. & Gingeras, T. R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423 (2007).
Article CAS PubMed Google Scholar
van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007). This work presents the earliest evidence of a role for miRNAs in cardiac function.
Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).
Article CAS PubMed Google Scholar
Giraldez, A. J. et al. microRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).
Article CAS PubMed Google Scholar
Chmielarz, P. et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 8, e2813 (2017).
Article CAS PubMed PubMed Central Google Scholar
Calin, G. A. & Croce, C. M. microRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).
Article CAS PubMed Google Scholar
Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. & Abdellatif, M. microRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007).
Article CAS PubMed Google Scholar
Care, A. et al. microRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).
Article CAS PubMed Google Scholar
Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).
Article CAS PubMed Google Scholar
McDonald, J. T. et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 37, 109839 (2021).
Article CAS PubMed PubMed Central Google Scholar
Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigo, R. & Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548 (2018).
Article CAS PubMed PubMed Central Google Scholar
Liu, Y.-C. et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 44, D209–D215 (2016).
Article CAS PubMed Google Scholar
Shen, C. et al. Identification of a dysregulated circRNA-associated gene signature for predicting prognosis, immune landscape, and drug candidates in bladder cancer. Front. Oncol. 12, 1018285 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y. J., Zhu, W. K., Qi, F. Y. & Che, F. Y. circHIPK3 promotes neuroinflammation through regulation of the miR-124-3p/STAT3/NLRP3 signaling pathway in Parkinson’s disease. Adv. Clin. Exp. Med. 32, 315–329 (2022).
Zhou, H. et al. Identification of circular RNA BTBD7_hsa_circ_0000563 as a novel biomarker for coronary artery disease and the functional discovery of BTBD7_hsa_circ_0000563 based on peripheral blood mononuclear cells: a case control study. Clin. Proteom. 19, 37 (2022).
Ward, Z. et al. Identifying candidate circulating RNA markers for coronary artery disease by deep RNA-sequencing in human plasma. Cells 11, 3191 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mattick, J. S. RNA regulation: a new genetics. Nat. Rev. Genet. 5, 316–323 (2004).
Article CAS PubMed Google Scholar
Orellana, E. A., Siegal, E. & Gregory, R. I. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).
Article CAS PubMed Google Scholar
Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).
Article CAS PubMed Google Scholar
Bansal, P. & Arora, M. Small interfering RNAs and RNA therapeutics in cardiovascular diseases. Adv. Exp. Med. Biol. 1229, 369–381 (2020).
Article CAS PubMed Google Scholar
Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).
Article CAS PubMed Google Scholar
Fabbri, M., Girnita, L., Varani, G. & Calin, G. A. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 29, 1377–1388 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).
Article CAS PubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).
Article CAS PubMed Google Scholar
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019). This work presents the recent update of miRBase, the official miRNA database, which is regularly updated and widely used.
Article CAS PubMed Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).
Article CAS PubMed Google Scholar
Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bartel, D. P. microRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).
Article CAS PubMed PubMed Central Google Scholar
Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. microRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).
Article CAS PubMed Google Scholar
Shang, R., Lee, S., Senavirathne, G. & Lai, E. C. microRNAs in action: biogenesis, function and regulation. Nat. Rev. Genet. https://doi.org/10.1038/s41576-023-00611-y (2023).
Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007). This study shows that, besides their well-known target-repressing function, miRNAs can also activate their target genes.
Article CAS PubMed Google Scholar
Li, G. et al. CCAR1 5′ UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance. Cell Res. 26, 655–673 (2016).
Article PubMed PubMed Central Google Scholar
Orom, U. A., Nielsen, F. C. & Lund, A. H. microRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460–471 (2008).
Bayraktar, R., Van Roosbroeck, K. & Calin, G. A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol. 11, 1673–1686 (2017).
Article CAS PubMed PubMed Central Google Scholar
Drula, R. et al. 17β-Estradiol promotes extracellular vesicle release and selective miRNA loading in ERα-positive breast cancer. Proc. Natl Acad. Sci. USA 120, e2122053120 (2023). This study provides mechanistic evidence that hormones influence extracellular vesicle secretion and loading with miRNAs.
Comments (0)