Selection of M7G-related lncRNAs in kidney renal clear cell carcinoma and their putative diagnostic and prognostic role

Takagi T, Fukuda H, Kondo T, et al. Prognostic markers for Refined Stratification of IMDC Intermediate-Risk Metastatic Clear Cell Renal Cell Carcinoma treated with first-line tyrosine kinase inhibitor therapy. Target Oncol. 2019;14(2):179–86.

Article  PubMed  Google Scholar 

Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.

Article  CAS  PubMed  Google Scholar 

Hutson TE, Figlin RA. Renal cell cancer. Cancer J. 2007;13(5):282–6.

Article  CAS  PubMed  Google Scholar 

Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.

Article  PubMed  PubMed Central  Google Scholar 

Fisher R, Gore M, Larkin J. Current and future systemic treatments for renal cell carcinoma. Semin Cancer Biol. 2013;23(1):38–45.

Article  PubMed  Google Scholar 

Jacobsohn KM, Wood CG. Adjuvant therapy for renal cell carcinoma. Semin Oncol. 2006;33(5):576–82.

Article  CAS  PubMed  Google Scholar 

Master VA, Gottschalk AR, Kane C, Carroll PR. Management of isolated renal fossa recurrence following radical nephrectomy. J Urol. 2005;174(2):473–7 ; discussion 477.

Article  PubMed  Google Scholar 

Klapper JA, Downey SG, Smith FO, et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the Surgery branch at the National Cancer Institute between 1986 and 2006. Cancer. 2008;113(2):293–301.

Article  CAS  PubMed  Google Scholar 

Bedke J, Albiges L, Capitanio U, et al. Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Nivolumab plus Cabozantinib joins Immune Checkpoint Inhibition Combination therapies for Treatment-naïve metastatic clear-cell renal cell carcinoma. Eur Urol. 2021;79(3):339–42.

Article  CAS  PubMed  Google Scholar 

Braun DA, Bakouny Z, Hirsch L, et al. Beyond conventional immune-checkpoint inhibition - novel immunotherapies for renal cell carcinoma. Nat Rev Clin Oncol. 2021;18(4):199–214.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology Guidelines on Renal Cell Carcinoma: the 2019 Update. Eur Urol. 2019;75(5):799–810.

Article  PubMed  Google Scholar 

Mori K, Mostafaei H, Miura N, et al. Systemic therapy for metastatic renal cell carcinoma in the first-line setting: a systematic review and network meta-analysis. Cancer Immunol Immunother. 2021;70(2):265–73.

Article  PubMed  Google Scholar 

Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA. 2002;8(10):1253–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enroth C, Poulsen LD, Iversen S, Kirpekar F, Albrechtsen A, Vinther J. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing. Nucleic Acids Res. 2019;47(20):e126.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomikawa C. 7-Methylguanosine modifications in transfer RNA (tRNA). Int J Mol Sci. 2018;19(12):4080.

Article  PubMed  PubMed Central  Google Scholar 

Zhang M, Song J, Yuan W, Zhang W, Sun Z. Roles of RNA methylation on Tumor immunity and clinical implications. Front Immunol. 2021;12:641507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trotman JB, Giltmier AJ, Mukherjee C, Schoenberg DR. RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs. Nucleic Acids Res. 2017;45(18):10726–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Lin H, Miao L, He J. Role of N7-methylguanosine (m(7)G) in cancer. Trends Cell Biol. 2022;32(10):819–24.

Article  CAS  PubMed  Google Scholar 

Chen Z, Zhu W, Zhu S, et al. METTL1 promotes hepatocarcinogenesis via m(7) G tRNA modification-dependent translation control. Clin Transl Med. 2021;11(12):e661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai Z, Liu H, Liao J, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81(16):3339–3355e8.

Article  CAS  PubMed  Google Scholar 

Ma J, Han H, Huang Y, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and Lung cancer progression. Mol Ther. 2021;29(12):3422–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borden K, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol. 2020;17(9):1239–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Volpon L, Culjkovic-Kraljacic B, Sohn HS, Blanchet-Cohen A, Osborne MJ, Borden K. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery. RNA. 2017;23(6):927–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li G, Chong T, Xiang X, Yang J, Li H. Downregulation of microRNA-15a suppresses the proliferation and invasion of renal cell carcinoma via direct targeting of eIF4E. Oncol Rep. 2017;38(4):1995–2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao J, Sun X, Zhang X, Chen D. Inhibition of eIF4E cooperates with chemotherapy and immunotherapy in renal cell carcinoma. Clin Transl Oncol. 2018;20(6):761–7.

Article  CAS  PubMed  Google Scholar 

Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 2007;129(6):1141–51.

Article  CAS  PubMed  Google Scholar 

Teixeira AL, Patrão AS, Dias F, et al. AGO2 expression levels and related genetic polymorphisms: influence in renal cell progression and aggressive phenotypes. Pharmacogenomics. 2021;22(16):1069–79.

Article  CAS  PubMed  Google Scholar 

Ding W, Zhang M, Zhang P, Zhang X, Sun J, Lin B. Identification of anoikis-related subtypes and immune landscape in kidney renal clear cell carcinoma. Sci Rep. 2023;13(1):18069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

di Meo NA, Lasorsa F, Rutigliano M, Milella M, Ferro M, Battaglia M, et al. The dark side of lipid metabolism in prostate and renal carcinoma: novel insights into molecular diagnostic and biomarker discovery. Expert Rev Mol Diagn. 2023;23(4):297–313.

Article  Google Scholar 

Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, et al. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn. 2019;19(5):397–407.

Article  CAS  PubMed  Google Scholar 

Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez I, Munita R, Agirre E, et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat Struct Mol Biol. 2015;22(5):370–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif