A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops

Nelson, G. C. et al. Climate change: impact on agriculture and costs of adaptation. Climate Change: Impact on Agriculture and Costs of Adaptation Vol. 21 (International Food Policy Research Institute, 2009).

Wang, J. et al. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. N. Phytol. 198, 925–937 (2013).

Article  CAS  Google Scholar 

Zhou, Y. et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774–786 (2021).

Article  CAS  PubMed  Google Scholar 

Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422–431 (2022).

Article  CAS  PubMed  Google Scholar 

Kihara, H. Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Agric. Hortic. 19, 889–890 (1944).

Google Scholar 

Mcfadden, E. S. & Sears, E. R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–89 (1946).

Article  PubMed  Google Scholar 

Tanksley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).

Article  CAS  PubMed  Google Scholar 

Xiao, J. et al. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 65, 1718–1775 (2022).

Article  PubMed  Google Scholar 

Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905–911 (2019).

Article  CAS  PubMed  Google Scholar 

Bohra, A. et al. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412–431 (2022).

Article  CAS  PubMed  Google Scholar 

Kashyap, A. et al. Strategies for utilization of crop wild relatives in plant breeding programs. Theor. Appl. Genet. 135, 4151–4167 (2022).

Article  PubMed  Google Scholar 

Balakrishnan, D., Surapaneni, M., Mesapogu, S. & Neelamraju, S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor. Appl. Genet. 132, 1–25 (2019).

Article  CAS  PubMed  Google Scholar 

Kishii, M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10, 585 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Cox, T. S. et al. Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Crop J. 5, 355–362 (2017).

Article  Google Scholar 

Matsuoka, Y. & Nasuda, S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet. 109, 1710–1717 (2004).

Article  PubMed  Google Scholar 

Matsuoka, Y., Takumi, S. & Kawahara, T. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115, 509–518 (2007).

Article  PubMed  Google Scholar 

Li, A., Liu, D., Yang, W., Kishii, M. & Mao, L. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 4, 552–558 (2018).

Article  CAS  Google Scholar 

Das, M. K., Bai, G., Mujeeb-Kazi, A. & Rajaram, S. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet. Resour. Crop Evol. 63, 1285–1296 (2016).

Article  CAS  Google Scholar 

Hao, M. et al. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 11, 252 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Hao, M. et al. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor. Appl. Genet. 132, 2285–2294 (2019).

Article  CAS  PubMed  Google Scholar 

Mujeeb-Kazi, A. et al. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust. J. Agric. Res. 59, 391–398 (2008).

Article  Google Scholar 

Mujeeb-Kazi, A. et al. Genetic diversity for wheat improvement as a conduit to food security. Adv. Agron. 122, 179–257 (2013).

Article  CAS  Google Scholar 

Zhang, L. Q. et al. Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica 172, 285–294 (2010).

Article  Google Scholar 

Li, H. et al. Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes. J. Genet. 95, 819–830 (2016).

Article  CAS  PubMed  Google Scholar 

Zhang, H. et al. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc. Natl Acad. Sci. USA 110, 3447–3452 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gill, B. S. & Raupp, W. J. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci. 27, 445–450 (1987).

Article  Google Scholar 

Zhang, D. et al. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × hexaploid wheat) as donor. Front. Plant Sci. 9, 1113 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. Studies on overcoming the cross compatibility of Aegilops squarrosa x Triticum aestivum. Acta Agronomica Sinica 8, 137-140(1982) (in Chinese with English abstract).

Zhang, D. et al. An advanced backcross population through synthetic octaploid wheat as a “Bridge”: development and QTL detection for seed dormancy. Front. Plant Sci. 8, 2123 (2017).

Article  Google Scholar 

Ma, F. et al. Introgression of QTL from Aegilops tauschii enhances yield-related traits in common wheat. Crop J. 11, 1521–1532 (2023).

Article  Google Scholar 

Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, G. et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 3, 946–955 (2017).

Article  CAS  PubMed  Google Scholar 

Jia, J. et al. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol. 22, 26 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).

Article  PubMed  Google Scholar 

Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Wu, Y., Zhang, C. & Wang, Y. Effects of Aegilops squarrosa cytoplasm on the characters of common wheat [in Chinese]. Sci. Agric. Sin. 4, 56–61 (1985).

Google Scholar 

Li, S. et al. Embryo rescue and embryo-callus-regenerated plants of an Aegilops tauschii x Triticum aestivum hybrid. Acta Bot. Boreal. Occident. Sin. 13, 134–139 (1993). in Chinese with English abstract.

Google Scholar 

Guzzon, F., Gianella, M., Giovannini, P. & Payne, T. S. Conserving wheat genetic resources. in Wheat Improvement: Food Security in a Changing Climate (eds Reynolds, M. P. & Braun, H.-J.) 299–318 (Springer, 2022).

Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).

Article  CAS  PubMed  Google Scholar 

Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

Article  CAS  PubMed  Google Scholar 

Huang, X., Huang, S., Han, B. & Li, J. The integrated genomics of crop domestication and breeding. Cell 185, 2828–2839 (2022).

Article  CAS  PubMed  Google Scholar 

McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science 325, 737–740 (2009).

Article  CAS  PubMed  Google Scholar 

Nice, L. M. et al. Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics 203, 1453–1467 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cha, J. K. et al. Speed vernalization to accelerate generation advance in winter cereal crops. Mol. Plant 15, 1300–1309 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, H. et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resist

Comments (0)

No login
gif