Nelson, G. C. et al. Climate change: impact on agriculture and costs of adaptation. Climate Change: Impact on Agriculture and Costs of Adaptation Vol. 21 (International Food Policy Research Institute, 2009).
Wang, J. et al. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. N. Phytol. 198, 925–937 (2013).
Zhou, Y. et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774–786 (2021).
Article CAS PubMed Google Scholar
Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422–431 (2022).
Article CAS PubMed Google Scholar
Kihara, H. Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Agric. Hortic. 19, 889–890 (1944).
Mcfadden, E. S. & Sears, E. R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–89 (1946).
Tanksley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).
Article CAS PubMed Google Scholar
Xiao, J. et al. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 65, 1718–1775 (2022).
Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905–911 (2019).
Article CAS PubMed Google Scholar
Bohra, A. et al. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412–431 (2022).
Article CAS PubMed Google Scholar
Kashyap, A. et al. Strategies for utilization of crop wild relatives in plant breeding programs. Theor. Appl. Genet. 135, 4151–4167 (2022).
Balakrishnan, D., Surapaneni, M., Mesapogu, S. & Neelamraju, S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor. Appl. Genet. 132, 1–25 (2019).
Article CAS PubMed Google Scholar
Kishii, M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10, 585 (2019).
Article PubMed PubMed Central Google Scholar
Cox, T. S. et al. Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Crop J. 5, 355–362 (2017).
Matsuoka, Y. & Nasuda, S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet. 109, 1710–1717 (2004).
Matsuoka, Y., Takumi, S. & Kawahara, T. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115, 509–518 (2007).
Li, A., Liu, D., Yang, W., Kishii, M. & Mao, L. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 4, 552–558 (2018).
Das, M. K., Bai, G., Mujeeb-Kazi, A. & Rajaram, S. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet. Resour. Crop Evol. 63, 1285–1296 (2016).
Hao, M. et al. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 11, 252 (2020).
Article PubMed PubMed Central Google Scholar
Hao, M. et al. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor. Appl. Genet. 132, 2285–2294 (2019).
Article CAS PubMed Google Scholar
Mujeeb-Kazi, A. et al. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust. J. Agric. Res. 59, 391–398 (2008).
Mujeeb-Kazi, A. et al. Genetic diversity for wheat improvement as a conduit to food security. Adv. Agron. 122, 179–257 (2013).
Zhang, L. Q. et al. Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica 172, 285–294 (2010).
Li, H. et al. Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes. J. Genet. 95, 819–830 (2016).
Article CAS PubMed Google Scholar
Zhang, H. et al. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc. Natl Acad. Sci. USA 110, 3447–3452 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gill, B. S. & Raupp, W. J. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci. 27, 445–450 (1987).
Zhang, D. et al. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × hexaploid wheat) as donor. Front. Plant Sci. 9, 1113 (2018).
Article PubMed PubMed Central Google Scholar
Zhang, Y. et al. Studies on overcoming the cross compatibility of Aegilops squarrosa x Triticum aestivum. Acta Agronomica Sinica 8, 137-140(1982) (in Chinese with English abstract).
Zhang, D. et al. An advanced backcross population through synthetic octaploid wheat as a “Bridge”: development and QTL detection for seed dormancy. Front. Plant Sci. 8, 2123 (2017).
Ma, F. et al. Introgression of QTL from Aegilops tauschii enhances yield-related traits in common wheat. Crop J. 11, 1521–1532 (2023).
Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
Article CAS PubMed PubMed Central Google Scholar
Zhao, G. et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 3, 946–955 (2017).
Article CAS PubMed Google Scholar
Jia, J. et al. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol. 22, 26 (2021).
Article CAS PubMed PubMed Central Google Scholar
Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).
Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).
Article CAS PubMed Google Scholar
Zhang, Y., Wu, Y., Zhang, C. & Wang, Y. Effects of Aegilops squarrosa cytoplasm on the characters of common wheat [in Chinese]. Sci. Agric. Sin. 4, 56–61 (1985).
Li, S. et al. Embryo rescue and embryo-callus-regenerated plants of an Aegilops tauschii x Triticum aestivum hybrid. Acta Bot. Boreal. Occident. Sin. 13, 134–139 (1993). in Chinese with English abstract.
Guzzon, F., Gianella, M., Giovannini, P. & Payne, T. S. Conserving wheat genetic resources. in Wheat Improvement: Food Security in a Changing Climate (eds Reynolds, M. P. & Braun, H.-J.) 299–318 (Springer, 2022).
Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).
Article CAS PubMed Google Scholar
Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).
Article CAS PubMed Google Scholar
Huang, X., Huang, S., Han, B. & Li, J. The integrated genomics of crop domestication and breeding. Cell 185, 2828–2839 (2022).
Article CAS PubMed Google Scholar
McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science 325, 737–740 (2009).
Article CAS PubMed Google Scholar
Nice, L. M. et al. Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics 203, 1453–1467 (2016).
Article CAS PubMed PubMed Central Google Scholar
Cha, J. K. et al. Speed vernalization to accelerate generation advance in winter cereal crops. Mol. Plant 15, 1300–1309 (2022).
Article CAS PubMed Google Scholar
Wang, H. et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resist
Comments (0)