Epidermodysplasia verruciformis–associated eccrine neoplasm: a rare entity with distinctive clinical and histopathologic features

Orth G, Jablonska S, Favre M, Croissant O, Jarzabek-Chorzelska M, Rzesa G (1978) Characterization of two types of human papillomaviruses in lesions of epidermodysplasia verruciformis. Proc Natl Acad Sci U S A 75:1537–1541. https://doi.org/10.1073/pnas.75.3.1537

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ramoz N, Rueda LA, Bouadjar B, Montoya LS, Orth G, Favre M (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32:579–581. https://doi.org/10.1038/ng1044

Article  CAS  PubMed  Google Scholar 

Gewirtzman A, Bartlett B, Tyring S (2008) Epidermodysplasia verruciformis and human papilloma virus. Curr Opin Infect Dis 21:141–146. https://doi.org/10.1097/QCO.0b013e3282f486c9

Article  PubMed  Google Scholar 

Tan T, Guitart J, Liu LL et al (2017) Eccrine syringofibroadenoma in association with acquired epidermodysplasia verruciformis. Am J Dermatopathol 39:534–537. https://doi.org/10.1097/DAD.0000000000000816

Article  PubMed  Google Scholar 

Ho JD, Kam SA, Al-Haseni A, Markova A, Sahni D, Lam C, Goldberg LJ, Bhawan J (2017) Benign and malignant hybrid adnexal tumors in a patient with epidermodysplasia verruciformis. J Cutan Pathol 44:969–973. https://doi.org/10.1111/cup.13022

Article  PubMed  Google Scholar 

Garcia EP, Minkovsky A, Jia Y, Ducar MD, Shivdasani P, Gong X et al (2017) Validation of OncoPanel: A targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch Pathol Lab Med 141(6):751–758

Article  CAS  PubMed  Google Scholar 

Russell-Goldman E, Lindeman NI, Laga AC, Hanna J (2020) Morphologic, immunohistochemical, and molecular distinction between fibroepithelioma of Pinkus and “fenestrated” basal cell carcinoma. Am J Dermatopathol 42:513–520. https://doi.org/10.1097/DAD.0000000000001563

Article  PubMed  Google Scholar 

Russell-Goldman E, MacConaill L, Hanna J (2021) Hedgehog pathway alterations downstream of Patched-1 are common in infundibulocystic basal cell carcinoma. Am J Dermatopathol 43:266–272. https://doi.org/10.1097/DAD.0000000000001746

Article  PubMed  Google Scholar 

Sekine S, Kiyono T, Ryo E, Ogawa R, Wakai S, Ichikawa H, Suzuki K, Arai S, Tsuta K, Ishida M, Sasajima Y, Goshima N, Yamazaki N, Mori T (2019) Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J Clin Invest 129:3827–3832. https://doi.org/10.1172/JCI126185

Article  PubMed  PubMed Central  Google Scholar 

Russell-Goldman E, Hornick JL, Hanna J (2021) Utility of YAP1 and NUT immunohistochemistry in the diagnosis of porocarcinoma. J Cutan Pathol 48:403–410. https://doi.org/10.1111/cup.13924

Article  PubMed  Google Scholar 

Vanderbilt C, Brenn T, Moy AP, Harloe G, Ariyan C, Athanasian E, Busam KJ (2022) Association of HPV42 with digital papillary adenocarcinoma and the use of in situ hybridization for its distinction from acral hidradenoma and diagnosis at non-acral sites. Mod Pathol 35:1405–1410. https://doi.org/10.1038/s41379-022-01094-8

Article  CAS  PubMed  Google Scholar 

Leiendecker L, Neumann T, Jung PS, Cronin SM, Steinacker TL, Schleiffer A, Schutzbier M, Mechtler K, Kervarrec T, Laurent E, Bachiri K, Coyaud E, Murali R, Busam KJ, Itzinger-Monshi B, Kirnbauer R, Cerroni L, Calonje E, Rütten A, Stubenrauch F, Obenauf AC (2023) Human papillomavirus 42 drives digital papillary adenocarcinoma and elicits a germ cell-like program conserved in HPV-positive cancers. Cancer Discov 13:70–84. https://doi.org/10.1158/2159-8290.CD-22-0489

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif