Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiol. 2019;165:1025–40.
Loria R, Kers J, Joshi M. Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol. 2006;44:469–87.
Article CAS PubMed Google Scholar
Liu J, Nothias L-F, Dorrestein PC, Tahlan K, Bignell DRD. Genomic and metabolomic analysis of the potato common scab pathogen Streptomyces scabiei. ACS Omega. 2021;6:11474–87.
Article CAS PubMed PubMed Central Google Scholar
Dees M, Wanner L. In search of better management of potato common scab. Potato Res. 2012;55:249–68.
Arseneault T, Goyer C, Filion M. Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathol. 2016;106:963–70.
Lin C, Tsai C-H, Chen P-Y, Wu C-Y, Chang Y-L, Yang Y-L. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One. 2018;13:e0196520
Article PubMed PubMed Central Google Scholar
Biessy A, Filion M. Biological control of potato common scab by plant-beneficial bacteria. Biol Control. 2022;165:104808–21.
Toussaint V, Valois D, Dodier M, Faucher E, Déry C, Brzezinski R. Characterization of actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Phytoprotection. 1997;78:43–51.
Beauséjour J, Clermont N, Beaulieu C. Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato. Plant Soil. 2003;256:463–8.
Kishimoto S, Tsunematsu Y, Nishimura S, Hayashi Y, Hattori A, Kakeya H. an antimicrobial cyclic lipodepsipeptide from Streptomyces sp. Tetrahedron. 2012;68:5572–8.
Takahashi N, Kaneko K, Kakeya H.Total synthesis and antimicrobial activity of tumescenamide C and its derivatives.J Org Chem.2020;85:4530–5.
Article CAS PubMed Google Scholar
Loria R. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology. 1995;85:537–41.
Bignell DRD, Francis IM, Fyans JK, Loria R. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol Plant Microbe Interact. 2014;27:875–85.
Article CAS PubMed Google Scholar
Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu Y-P, Koteva K. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature. 2020;578:582–7.
Article CAS PubMed Google Scholar
van der Aart LT, Spijksma GK, Harms A, Vollmer W, Hankemeier T, van Wezel GP. High-resolution analysis of the peptidoglycan composition in Streptomyces coelicolor. J Bacteriol. 2018;200:e00290–18.
PubMed PubMed Central Google Scholar
Schaub RE, Dillard JP. Digestion of peptidoglycan and analysis of soluble fragments. Bio-Protoc. 2017;7:2438.
Kühner D, Stahl M, Demircioglu DD, Bertsche U. From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci Rep. 2014;4:7494.
Article PubMed PubMed Central Google Scholar
Kho K, Meredith TC. Extraction and Analysis of Bacterial Teichoic Acids. Bio-Protoc. 2018;8:e3078.
Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S. et al. A new antibiotic selectively kills gram-negative pathogens. Nature. 2019;576:459–64.
Article CAS PubMed PubMed Central Google Scholar
Bowden G, Johnson J, Schachtele C.The predominant actinomyces spp. isolated from infected dentin of active root caries lesions.J Dent Res. 1993;72:1171–9.
Article CAS PubMed Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis 33 program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
Jourdan S, Francis IM, Kim MJ, Salazar JJC, Planckaert S, Frère J-M. et al. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci Rep.2016;6:27144
Article CAS PubMed PubMed Central Google Scholar
Bignell DR, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact. 2010;23:161–75.
Article CAS PubMed Google Scholar
Francis IM, Bergin D, Deflandre B, Gupta S, Salazar JJC, Villagrana R. et al. Role of alternative elicitor transporters in the onset of plant host colonization by Streptomyces scabiei 87-22. Biology. 2023;12:234–52.
Article CAS PubMed PubMed Central Google Scholar
Deflandre B, Stulanovic N, Planckaert S, Anderssen S, Bonometti B, Karim L. et al. The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microb Genom.2022;8:000760
CAS PubMed PubMed Central Google Scholar
Kinkel LL, Bowers JH, Shimizu K, Neeno-Eckwall EC, Schottel JL. Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Can J Microbiol. 1998;44:768–76.
Article CAS PubMed Google Scholar
Jourdan S, Francis IM, Deflandre B, Tenconi E, Riley J, Planckaert S. et al. Contribution of the β-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. Mol Plant Pathol. 2018;19:1480–90.
Article CAS PubMed Google Scholar
Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC. et al. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol. 2013;20:272–84.
Article CAS PubMed PubMed Central Google Scholar
Bem AE, Velikova N, Pellicer MT, van Baarlen P, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol. 2015;10:213–24.
Article CAS PubMed Google Scholar
Kunkle T, Abdeen S, Salim N, Ray A-M, Stevens M, Ambrose AJ. et al. Hydroxybiphenylamide GroEL/ES inhibitors are potent antibacterials against planktonic and biofilm forms of Staphylococcus aureus. J Med Chem.2018;61:10651–64.
Article CAS PubMed PubMed Central Google Scholar
Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T. et al. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol.2009;4:875–83.
Article CAS PubMed PubMed Central Google Scholar
Campbell J, Singh AK, Santa Maria JP,Jr., Kim Y, Brown S, Swoboda JG. et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol.2011;6:106–16.
Article CAS PubMed Google Scholar
Lee SH, Wang H, Labroli M, Koseoglu S, Zuck P, Mayhood T. et al. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci Transl Med.2016;8:329ra32
Naumova IB, Shashkov AS, Tul’skaya EM, Streshinskaya GM, Kozlova YI, Potekhina NV. et al. Cell wall teichoic acids: structural diversity, species specificity in the genus Nocardiopsis, and chemotaxonomic perspective. FEMS Microbiol Rev.2001;25:269–83.
Article CAS PubMed Google Scholar
Brown S, Santa Maria JP Jr, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 2013;67:313–36.
Article CAS PubMed Google Scholar
Takenaka K, Kaneko K, Takahashi N, Nishimura S, Kakeya H. Retro-aza-Michael reaction of an o-aminophenol adduct in protic solvents inspired by natural products. Bioorg Med Chem. 2021;35:116059–116059.
Comments (0)