Demographic bias in misdiagnosis by computational pathology models

Song, A. H. et al. Artificial intelligence for digital and computational pathology. Nat. Rev. Bioeng. 1, 930–949 (2023).

Article  Google Scholar 

van der Laak, J., Litjens, G. & Ciompi, F. Deep learning in histopathology: the path to the clinic. Nat. Med. 27, 775–784 (2021).

Article  PubMed  Google Scholar 

Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, M. Y. et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 555–570 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Skrede, O.-J. et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395, 350–360 (2020).

Article  CAS  PubMed  Google Scholar 

Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019).

Article  CAS  PubMed  Google Scholar 

Chen, R. J. et al. Pan-cancer integrative histology–genomic analysis via multimodal deep learning. Cancer Cell 40, 865–878 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

Article  CAS  PubMed  Google Scholar 

Chen, R. J. et al. Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. in Proc. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition 16144–16155 (IEEE, 2022).

Shao, Z. et al. TransMIL: transformer based correlated multiple instance learning for whole slide image classification. in Advances in Neural Information Processing Systems Vol. 34 (eds. Ranzato, M. et al.) 2136–2147 (Curran Associates, 2021).

Chan, T. H., Cendra, F. J., Ma, L., Yin, G. & Yu, L. Histopathology whole slide image analysis with heterogeneous graph representation learning. in Proc. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition 15661–15670 (IEEE, 2023).

Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leo, P. et al. Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study. NPJ Precis. Oncol. 5, 35 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howard, F. M. et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat. Commun. 12, 4423 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatterji, S. et al. Prediction models for hormone receptor status in female breast cancer do not extend to males: further evidence of sex-based disparity in breast cancer. NPJ Breast Cancer 9, 91 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dehkharghanian, T. et al. Biased data, biased AI: deep networks predict the acquisition site of TCGA images. Diagn. Pathol. 18, 67 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

Article  CAS  PubMed  Google Scholar 

Mhasawade, V., Zhao, Y. & Chunara, R. Machine learning and algorithmic fairness in public and population health. Nat. Mach. Intell. 3, 659–666 (2021).

Article  Google Scholar 

Gichoya, J. W. et al. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit. Health 4, e406–e414 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pierson, E., Cutler, D. M., Leskovec, J., Mullainathan, S. & Obermeyer, Z. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat. Med. 27, 136–140 (2021).

Article  CAS  PubMed  Google Scholar 

Population Estimates, July 1, 2022 (V2022). U.S. Census Bureau QuickFacts https://www.census.gov/quickfacts/fact/table/US/PST045222 (2022).

Landry, L. G., Ali, N., Williams, D. R., Rehm, H. L. & Bonham, V. L. Lack of diversity in genomic databases is a barrier to translating precision medicine research into practice. Health Aff. (Millwood) 37, 780–785 (2018).

Article  PubMed  Google Scholar 

Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spratt, D. E. et al. Racial/ethnic disparities in genomic sequencing. JAMA Oncol. 2, 1070–1074 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Khor, S. et al. Racial and ethnic bias in risk prediction models for colorectal cancer recurrence when race and ethnicity are omitted as predictors. JAMA Netw. Open 6, e2318495 (2023).

Article  PubMed  PubMed Central  Google Scholar 

van der Burgh, A. C., Hoorn, E. J. & Chaker, L. Removing race from kidney function estimates. JAMA 325, 2018 (2021).

Article  PubMed  Google Scholar 

Diao, J. A. et al. Clinical implications of removing race from estimates of kidney function. JAMA 325, 184–186 (2021).

Article  PubMed  Google Scholar 

Marmot, M. Social determinants of health inequalities. Lancet 365, 1099–1104 (2005).

Article  PubMed  Google Scholar 

Dietze, E. C., Sistrunk, C., Miranda-Carboni, G., O’Reagan, R. & Seewaldt, V. L. Triple-negative breast cancer in African-American women: disparities versus biology. Nat. Rev. Cancer 15, 248–254 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cormier, J. N. et al. Ethnic differences among patients with cutaneous melanoma. Arch. Intern. Med. 166, 1907–1914 (2006).

Article  PubMed  Google Scholar 

Rubin, J. B. The spectrum of sex differences in cancer. Trends Cancer 8, 303–315 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lara, O. D. et al. Pan-cancer clinical and molecular analysis of racial disparities. Cancer 126, 800–807 (2020).

Article  CAS  PubMed  Google Scholar 

Heath, E. I. et al. Racial disparities in the molecular landscape of cancer. Anticancer Res. 38, 2235–2240 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Gucalp, A. et al. Male breast cancer: a disease distinct from female breast cancer. Breast Cancer Res. Treat. 173, 37–48 (2019).

Article  PubMed  Google Scholar 

Dong, M. et al. Sex differences in cancer incidence and survival: a pan-cancer analysis. Cancer Epidemiol. Biomarkers Prev. 29, 1389–1397 (2020).

Article  PubMed  Google Scholar 

Butler, E. N., Kelly, S. P., Coupland, V. H., Rosenberg, P. S. & Cook, M. B. Fatal prostate cancer incidence trends in the United States and England by race, stage, and treatment. Br. J. Cancer 123, 487–494 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zavala, V. A. et al. Cancer health disparities in racial/ethnic minorities in the United States. Br. J. Cancer 124, 315–332 (2021).

Article  PubMed  Google Scholar 

Ngan, H.-L., Wang, L., Lo, K.-W. & Lui, V. W. Y. Genomic landscapes of EBV-associated nasopharyngeal carcinoma vs. HPV-associated head and neck cancer. Cancers (Basel) 10, 210 (2018).

Article  PubMed  Google Scholar 

Singh, H., Singh, R., Mhasawade, V. & Chunara, R. Fairness violations and mitigation under covariate shift. in Proc. 2021 ACM Conference on Fairness, Accountability, and Transparency 3–13 (Association for Computing Machinery, 2021).

Maity, S., Mukherjee, D., Yurochkin, M. & Sun, Y. Does enforcing fairness mitigate biases caused by subpopulation shift? in Advances in Neural Information Processing Systems Vol. 34 (eds. Ranzato, M. et al.) 25773–25784 (Curran Associates, 2021).

Giguere, S. et al. Fairness guarantees under demographic shift. in Proc. 10th International Conference on Learning Representations (ICLR, 2022).

Schrouff, J. et al. Diagnosing failures of fairness transfer across distribution shift in real-world medical settings. in Advances in Neural Information Processing Systems Vol. 35 (eds. Koyejo, S. et al.) 19304–19318 (Curran Associates, 2022).

Chen, S. et al. Machine learning-based pathomics signature could act as a novel prognostic marker for patients with clear cell renal cell carcinoma. Br. J. Cancer 126, 771–777 (2022).

Article  CAS  PubMed  Google Scholar 

US Food and Drug Administration. Evaluation of automatic class III designation for Paige Prostate. www.accessdata.fda.gov/cdrh_docs/reviews/DEN200080.pdf (2021).

Comments (0)

No login
gif