Abecassis, M. et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin. J. Am. Soc. Nephrol. 3, 471–480 (2008).
Article PubMed PubMed Central Google Scholar
Lentine, K. L. et al. OPTN/SRTR 2021 annual data report: kidney. Am. J. Transpl. 23, S21–S120 (2023).
Halloran, P. F., Famulski, K. S. & Reeve, J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat. Rev. Nephrol. 12, 534–548 (2016).
Article CAS PubMed Google Scholar
Madill-Thomsen, K. S. et al. Relating molecular T cell-mediated rejection activity in kidney transplant biopsies to time and to histologic tubulitis and atrophy-fibrosis. Transplantation 107, 1102–1114 (2023).
Article CAS PubMed PubMed Central Google Scholar
Halloran, P. F. et al. Review: the transcripts associated with organ allograft rejection. Am. J. Transpl. 18, 785–795 (2018).
Liu, Y. et al. Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. Theranostics 10, 8851–8862 (2020).
Article CAS PubMed PubMed Central Google Scholar
Malone, A. F. et al. Harnessing expressed single nucleotide variation and single cell RNA sequencing to define immune cell chimerism in the rejecting kidney transplant. J. Am. Soc. Nephrol. 31, 1977–1986 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rashmi, P. et al. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am. J. Transpl. 22, 876–885 (2022).
Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).
Article CAS PubMed PubMed Central Google Scholar
McDaniels, J. M. et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int. 103, 1077–1092 (2023).
Article CAS PubMed Google Scholar
Suryawanshi, H. et al. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS ONE 17, e0267704 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kellum, J. A. & Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care 17, 204 (2013).
Article PubMed PubMed Central Google Scholar
Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).
Article CAS PubMed Google Scholar
Vijayan, A. Tackling AKI: prevention, timing of dialysis and follow-up. Nat. Rev. Nephrol. 17, 87–88 (2021).
Article CAS PubMed Google Scholar
Ronco, C. Acute kidney injury: from clinical to molecular diagnosis. Crit. Care 20, 201 (2016).
Article PubMed PubMed Central Google Scholar
Kane-Gill, S. L. et al. Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am. J. Kidney Dis. 65, 860–869 (2015).
Coca, S. G., Yusuf, B., Shlipak, M. G., Garg, A. X. & Parikh, C. R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53, 961–973 (2009).
Article PubMed PubMed Central Google Scholar
Newsome, B. B. et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch. Intern. Med. 168, 609–616 (2008).
Article CAS PubMed Google Scholar
Abdala, P. M., Swanson, E. A. & Hutchens, M. P. Meta-analysis of AKI to CKD transition in perioperative patients. Perioper. Med. 10, 24 (2021).
Guzzi, F., Cirillo, L., Roperto, R. M., Romagnani, P. & Lazzeri, E. Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: an updated view. Int. J. Mol. Sci. 20, 4941 (2019).
Article CAS PubMed PubMed Central Google Scholar
Fogo, A. B., Lusco, M. A., Najafian, B. & Alpers, C. E. AJKD atlas of renal pathology: ischemic acute tubular injury. Am. J. Kidney Dis. 67, e25 (2016).
Fogo, A. B., Lusco, M. A., Najafian, B. & Alpers, C. E. AJKD atlas of renal pathology: toxic acute tubular injury. Am. J. Kidney Dis. 67, e31–e32 (2016).
Liu, J. et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2, e94716 (2017).
Article PubMed PubMed Central Google Scholar
Cippa, P. E. & McMahon, A. P. Proximal tubule responses to injury: interrogation by single-cell transcriptomics. Curr. Opin. Nephrol. Hypertens. 32, 352–358 (2023).
Article CAS PubMed Google Scholar
Xu, K. et al. Unique transcriptional programs identify subtypes of AKI. J. Am. Soc. Nephrol. 28, 1729–1740 (2017).
Article CAS PubMed Google Scholar
Vigolo, E. et al. Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney Int. 95, 108–122 (2019).
Article CAS PubMed Google Scholar
Marko, L. et al. Tubular epithelial NF-κB activity regulates ischemic AKI. J. Am. Soc. Nephrol. 27, 2658–2669 (2016).
Article CAS PubMed PubMed Central Google Scholar
Supavekin, S. et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 63, 1714–1724 (2003).
Article CAS PubMed Google Scholar
Yuen, P. S., Jo, S. K., Holly, M. K., Hu, X. & Star, R. A. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol. Genomics 25, 375–386 (2006).
Article CAS PubMed Google Scholar
Yoshida, T. et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 61, 1646–1654 (2002).
Article CAS PubMed Google Scholar
Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).
Article CAS PubMed Google Scholar
Gerhardt, L. M. S. & McMahon, A. P. Identifying common molecular mechanisms in experimental and human acute kidney injury. Semin. Nephrol. 42, 151286 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chang-Panesso, M. & Humphreys, B. D. Cellular plasticity in kidney injury and repair. Nat. Rev. Nephrol. 13, 39–46 (2017).
Article CAS PubMed Google Scholar
Chang-Panesso, M. et al. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501–5517 (2019).
Article CAS PubMed PubMed Central Google Scholar
Humphreys, B. D. Kidney injury, stem cells and regeneration. Curr. Opin. Nephrol. Hypertens. 23, 25–31 (2014).
Article PubMed PubMed Central Google Scholar
Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).
Article PubMed PubMed Central Google Scholar
Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cell 30, 1714–1725 (2012).
Loverre, A. et al. Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 85, 1112–1119 (2008).
Comments (0)