Kim, S., Pochitaloff, M., Stooke-Vaughan, G. A. & Campas, O. Embryonic tissues as active foams. Nat. Phys. 17, 859–866 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013).
Article CAS PubMed Google Scholar
Tetley, R. J. & Mao, Y. The same but different: cell intercalation as a driver of tissue deformation and fluidity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170328 (2018).
Article PubMed PubMed Central Google Scholar
Founounou, N. et al. Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nat. Commun. 12, 6974 (2021).
Article CAS PubMed PubMed Central Google Scholar
Chen, T., Saw, T. B., Mege, R. M. & Ladoux, B. Mechanical forces in cell monolayers. J. Cell Sci. 131, jcs218156 (2018).
Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545 (2012).
Article CAS PubMed Google Scholar
Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).
Article CAS PubMed Google Scholar
Rossen, N. S., Tarp, J. M., Mathiesen, J., Jensen, M. H. & Oddershede, L. B. Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun. 5, 5720 (2014).
Article CAS PubMed Google Scholar
Özkaya, N., Nordin, M., Goldsheyder, D. & Leger, D. (eds) Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation 221–236 (Springer International Publishing, 2012).
Snoeijer, J. H., Pandey, A., Herrada, M. A. & Eggers, J. The relationship between viscoelasticity and elasticity. Proc. Math. Phys. Eng. Sci. 476, 20200419 (2020).
CAS PubMed PubMed Central Google Scholar
Cacopardo, L. & Ahluwalia, A. Engineering and monitoring 3D cell constructs with time-evolving viscoelasticity for the study of liver fibrosis in vitro. Bioengineering 8, 106 (2021).
Article CAS PubMed PubMed Central Google Scholar
Clement, R., Dehapiot, B., Collinet, C., Lecuit, T. & Lenne, P. F. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis. Curr. Biol. 27, 3132–3142.e4 (2017).
Article CAS PubMed Google Scholar
Duda, M. et al. Polarization of myosin II refines tissue material properties to buffer mechanical stress. Dev. Cell 48, 245–260.e7 (2019).
Article CAS PubMed PubMed Central Google Scholar
Liu, A. S. et al. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci. Rep. 6, 33919 (2016).
Article CAS PubMed PubMed Central Google Scholar
Teranishi, A. et al. Epithelial folding irreversibility is controlled by elastoplastic transition via mechanosensitive actin bracket formation. Preprint at bioRxiv https://doi.org/10.1101/2023.12.19.572470 (2024).
Zhijie, W., Mark, J. G. & Naomi, C. C. In Viscoelastic and Viscoplastic Materials (ed. Mohamed Fathy, E.-A.) (IntechOpen, 2016).
Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).
Lawson-Keister, E. & Manning, M. L. Jamming and arrest of cell motion in biological tissues. Curr. Opin. Cell Biol. 72, 146–155 (2021).
Article CAS PubMed Google Scholar
Atia, L., Fredberg, J. J., Gov, N. S. & Pegoraro, A. F. Are cell jamming and unjamming essential in tissue development? Cell Dev. 168, 203727 (2021).
Bocanegra-Moreno, L., Singh, A., Hannezo, E., Zagorski, M. & Kicheva, A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nat. Phys. 19, 1050–1058 (2023).
Article CAS PubMed PubMed Central Google Scholar
Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl Acad. Sci. USA 112, 15314–15319 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).
Article CAS PubMed PubMed Central Google Scholar
Park, J. A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).
Article CAS PubMed PubMed Central Google Scholar
Tetley, R. J. et al. Tissue fluidity promotes epithelial wound healing. Nat. Phys. 15, 1195–1203 (2019).
Article CAS PubMed PubMed Central Google Scholar
Campàs, O., Noordstra, I. & Yap, A. S. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat. Rev. Mol. Cell Biol. 25, 252–269 (2023).
Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).
Article CAS PubMed PubMed Central Google Scholar
Kasza, K. E. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).
Article CAS PubMed Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).
Article CAS PubMed Google Scholar
Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545 (2012).
Article CAS PubMed Google Scholar
Lappalainen, P., Kotila, T., Jegou, A. & Romet-Lemonne, G. Biochemical and mechanical regulation of actin dynamics. Nat. Rev. Mol. Cell Biol. 23, 836–852 (2022).
Article CAS PubMed Google Scholar
Curran, S. et al. Myosin II controls junction fluctuations to guide epithelial tissue ordering. Dev. Cell 43, 480–492.e6 (2017).
Article CAS PubMed PubMed Central Google Scholar
Yamamoto, T., Sussman, D. M., Shibata, T. & Manning, M. L. Non-monotonic fluidization generated by fluctuating edge tensions in confluent tissues. Soft Matter 18, 2168–2175 (2022).
Article CAS PubMed Google Scholar
Matis, M. The mechanical role of microtubules in tissue remodeling. Bioessays 42, e1900244 (2020).
Takeda, M., Sami, M. M. & Wang, Y. C. A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat. Cell Biol. 20, 36–45 (2018).
Article CAS PubMed Google Scholar
Booth, A. J. R., Blanchard, G. B., Adams, R. J. & Roper, K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev. Cell 29, 562–576 (2014).
Article CAS PubMed PubMed Central Google Scholar
Enomoto, T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct. Funct. 21, 317–326 (1996).
Article CAS PubMed Google Scholar
Liu, B. P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249–255 (1998).
Article CAS PubMed Google Scholar
Roper, K. Microtubules enter centre stage for morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190557 (2020).
Article CAS PubMed PubMed Central Google Scholar
Colin, L. et al. Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts. Proc. Natl Acad. Sci. USA 117, 32731–32738 (2020).
Comments (0)