Virchow, R. A. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre (Hirschwald, 1858).
Schwann, T. Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants (English translation by Henry Smith, for the Sydenham Society, 1847) (Sydenham Society, 1839).
Liebert, H. Abhandlungen aus dem Gebiete der praktischen Chirurgie und der pathologischen Physiologie. Nach eigenen Untersuchungen und Erfahrungen und mit besonderer Rücksicht auf die Dieffenbach’sche Klinik in Berlin (Veit, 1849).
Ziegler, E. General Pathology; or, The Science of the Causes, Nature and Course of the Pathological Disturbances which Occur in the Living Subject (W. Wood and Company, 1899).
Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).
Article CAS PubMed Google Scholar
Pakshir, P. et al. The myofibroblast at a glance. J. Cell Sci. 133, jcs227900 (2020).
Article CAS PubMed Google Scholar
Abercrombie, M., Flint, M. H. & James, D. W. Wound contraction in relation to collagen formation in scorbutic guinea pigs. J. Embryol. Exp. Morphol. 4, 167–175 (1956).
Gabbiani, G., Ryan, G. B. & Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27, 549–550 (1971).
Article CAS PubMed Google Scholar
Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B. & Statkov, P. R. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173, 548–550 (1971).
Article CAS PubMed Google Scholar
Schuster, R., Younesi, F., Ezzo, M. & Hinz, B. The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb. Perspect. Biol. 15, a041231 (2023).
Article CAS PubMed Google Scholar
Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).
Article PubMed PubMed Central Google Scholar
de Oliveira Camargo, R., Abual’anaz, B., Rattan, S. G., Filomeno, K. L. & Dixon, I. M. C. Novel factors that activate and deactivate cardiac fibroblasts: a new perspective for treatment of cardiac fibrosis. Wound Repair Regen. 29, 667–677 (2021).
Schreibing, F., Anslinger, T. M. & Kramann, R. Fibrosis in pathology of heart and kidney: from deep RNA-sequencing to novel molecular targets. Circ. Res. 132, 1013–1033 (2023).
Article CAS PubMed Google Scholar
Tacke, F., Puengel, T., Loomba, R. & Friedman, S. L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. 79, 552–566 (2023).
Article CAS PubMed Google Scholar
Brugger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).
Wang, J. et al. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol. Rev. 302, 211–227 (2021).
Article CAS PubMed PubMed Central Google Scholar
Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).
Article CAS PubMed Google Scholar
Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).
Article CAS PubMed Google Scholar
Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).
Article CAS PubMed PubMed Central Google Scholar
Layton, T. & Nanchahal, J. Recent advances in the understanding of Dupuytren’s disease. F1000Res 8, 231 (2019).
Wilson, S. E. Corneal myofibroblasts and fibrosis. Exp. Eye Res. 201, 108272 (2020).
Article CAS PubMed PubMed Central Google Scholar
Powell, S., Irnaten, M. & O’Brien, C. Glaucoma — ‘a stiff eye in a stiff body’. Curr. Eye Res. 48, 152–160 (2023).
Zeisberg, M. & Duffield, J. S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol. 21, 1247–1253 (2010).
Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).
Article CAS PubMed PubMed Central Google Scholar
Zhao, J. et al. Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat. Commun. 12, 2564 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sinha, M. et al. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue. Nat. Commun. 9, 936 (2018).
Article PubMed PubMed Central Google Scholar
Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).
Article CAS PubMed PubMed Central Google Scholar
Dias, D. O. et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat. Commun. 12, 5501 (2021).
Article CAS PubMed PubMed Central Google Scholar
Soliman, H. et al. Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28, 1690–1707 (2021).
Article CAS PubMed Google Scholar
Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).
Article CAS PubMed PubMed Central Google Scholar
Shook, B. et al. The role of adipocytes in tissue regeneration and stem cell niches. Annu. Rev. Cell Dev. Biol. 6, 609–631 (2016).
Rognoni, E. et al. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol. Syst. Biol. 14, e8174 (2018).
Article PubMed PubMed Central Google Scholar
Jiang, D., Guo, R., Machens, H. G. & Rinkevich, Y. Diversity of fibroblasts and their roles in wound healing. Cold Spring Harb. Perspect. Biol. 15, a041222 (2023).
Article CAS PubMed Google Scholar
Papayannopoulou, T. G. & Martin, G. M. Alkaline phosphatase “constitutive” clones: evidence for de-novo heterogeneity of established human skin fibroblast strains. Exp. Cell Res. 45, 72–84 (1967).
Article CAS PubMed Google Scholar
Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).
Article CAS PubMed PubMed Central Google Scholar
Yao, L. et al. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep. 40, 111192 (2022).
Article CAS PubMed PubMed Central Google Scholar
Scott, R. W., Arostegui, M., Schweitzer, R., Rossi, F. M. V. & Underhill, T. M. Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration. Cell Stem Cell 25, 797–813.e9 (2019).
Article CAS PubMed PubMed Central Google Scholar
Abbasi, S. et al. Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell 27, 396–412.e6 (2020).
Article CAS PubMed Google Scholar
Hagood, J. S. et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am. J. Pathol. 167, 365–379 (2005).
Article CAS PubMed PubMed Central Google Scholar
Fendt, B. M. et al. Protein atlas of fibroblast specific protein 1 (FSP1)/S100A4. Histol. Histopathol. 38, 1391–1401 (2023).
Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).
Comments (0)