Metabolomics unveil key pathways underlying the synergistic activities of aztreonam and avibactam against multidrug-resistant Escherichia coli

Hutchings MI, Truman AW, Wilkinson B (2019) Antibiotics: past, present and future. Curr Opin Microbiol 51:72–80

Article  CAS  PubMed  Google Scholar 

Oo C, Zhang X, Sy SKB (2023) Evaluating the status of antibiotic approvals and readiness to combat antimicrobial resistance: what else can we do better? Drug Discov Today 28(8):103674

Article  CAS  PubMed  Google Scholar 

Oo C, Sy SKB (2020) Learning and augmenting natural processes: potential means of combating antimicrobial resistance from a drug R&D perspective. Drug Discov Today 25(1):1–3

Article  PubMed  Google Scholar 

Cornely OA, Cisneros JM, Torre-Cisneros J, Rodríguez-Hernández MJ, Tallón-Aguilar L, Calbo E, Horcajada JP, Queckenberg C, Zettelmeyer U, Arenz D, Rosso-Fernández CM, Jiménez-Jorge S, Turner G, Raber S, O’Brien S, Luckey A (2020) Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother 75(3):618–627

Article  CAS  PubMed  Google Scholar 

Sy SK, Beaudoin ME, Zhuang L, Loblein KI, Lux C, Kissel M, Tremmel R, Frank C, Strasser S, Heuberger JA, Mulder MB, Schuck VJ, Derendorf H (2016) In vitro pharmacokinetics/pharmacodynamics of the combination of avibactam and aztreonam against MDR organisms. J Antimicrob Chemother 71(7):1866–1880

Article  CAS  PubMed  Google Scholar 

Sy S, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Derendorf H (2017) Prediction of in vivo and in vitro infection model results using a semi-mechanistic model of avibactam and aztreonam combination against multidrug resistant organisms. CPT: Pharmacometrics Syst Pharmacol 6(3):197–207

CAS  PubMed  Google Scholar 

Davido B, Fellous L, Lawrence C, Maxime V, Rottman M, Dinh A (2017) Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 61(9):e01008–01017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcone M, Daikos GL, Tiseo G, Bassoulis D, Giordano C, Galfo V, Leonildi A, Tagliaferri E, Barnini S, Sani S, Farcomeni A, Ghiadoni L, Menichetti F (2021) Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis 72(11):1871–1878

Article  CAS  PubMed  Google Scholar 

Feng K, Jia N, Zhu P, Sy S (2021) Aztreonam/avibactam effect on pharmacodynamic indices for mutant selection of Escherichia coli and Klebsiella pneumoniae harbouring serine- and New Delhi metallo-β-lactamases. J Antimicrob Chemother 76(11):2875–2883

Article  CAS  PubMed  Google Scholar 

Stachyra T, Pechereau MC, Bruneau JM, Claudon M, Frere JM, Miossec C, Coleman K, Black MT (2010) Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-beta-lactam beta-lactamase inhibitor. Antimicrob Agents Chemother 54(12):5132–5138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shields RK, Doi Y (2020) Aztreonam combination therapy: an answer to metallo-β-lactamase-producing gram-negative bacteria? Clin Infect Dis 71(4):1099–1101

Article  CAS  PubMed  Google Scholar 

Zhu S, Yue J, Wang X, Zhang J, Yu M, Zhan Y, Zhu Y, Sy SKB, Lv Z (2023) Metabolomics revealed mechanism for the synergistic effect of sulbactam, polymyxin-B and amikacin combination against Acinetobacter baumannii. Front Microbiol 14:1217270

Article  PubMed  PubMed Central  Google Scholar 

Zhu S, Zhang J, Song C, Liu Y, Oo C, Heinrichs MT, Lv Z, Zhu Y, Sy SKB, Deng P, Yu M (2022) Metabolomic profiling of polymyxin-B in combination with meropenem and sulbactam against multi-drug resistant Acinetobacter baumannii. Front Microbiol 13:1013934

Article  PubMed  PubMed Central  Google Scholar 

Jiang M, Li X, Xie CL, Chen P, Luo W, Lin CX, Wang Q, Shu DM, Luo CL, Qu H, Ji J (2023) Fructose-enabled killing of antibiotic-resistant Salmonella enteritidis by gentamicin: insight from reprogramming metabolomics. Int J Antimicrob Agents 62(3):106907

Article  CAS  PubMed  Google Scholar 

Zhang J, Yang H, Zhang L, Lv Z, Yu M, Sy SKB, Zhan Y (2023) Comparative metabolomics reveal key pathways associated with the synergistic activities of aztreonam and clavulanate combination against multidrug-resistant Escherichia coli. mSystems:e0075823

CLSI (2024) Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA

Zhao J, Han ML, Zhu Y, Lin YW, Wang YW, Lu J, Hu Y, Tony Zhou Q, Velkov T, Li J (2021) Comparative metabolomics reveals key pathways associated with the synergistic activity of polymyxin B and rifampicin combination against multidrug-resistant Acinetobacter baumannii. Biochem Pharmacol 184:114400

Article  CAS  PubMed  Google Scholar 

Morrison L, Zembower TR (2020) Antimicrobial resistance. Gastrointest Endosc Clin N Am 30(4):619–635

Article  PubMed  Google Scholar 

McEwen SA, Collignon PJ (2018) Antimicrobial Resistance: a one health perspective. Microbiol Spectr 6(2):2

Article  Google Scholar 

Murray CJL, Ikuta KS, Sharara F (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655

Article  CAS  Google Scholar 

Durante-Mangoni E, Andini R, Zampino R (2019) Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect 25(8):943–950

Article  CAS  PubMed  Google Scholar 

Lutgring JD (2019) Carbapenem-resistant Enterobacteriaceae: an emerging bacterial threat. Semin Diagn Pathol 36(3):182–186

Article  PubMed  Google Scholar 

Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A (2018) Treatment of infections caused by extended-spectrum-β-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev 31(2):e00079–e00017

Article  PubMed  PubMed Central  Google Scholar 

Wu S, Zong Z (2022) Aztreonam-avibactam: an option against carbapenem-resistant enterobacterales with emerging resistance. Precision Clin Med 5(4):pbac029

Article  Google Scholar 

Yu W, Xiong L, Luo Q, Chen Y, Ji J, Ying C, Liu Z, Xiao Y (2021) In Vitro Activity comparison of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections with carbapenem-resistant organisms in China. Front Cell Infect Microbiol 11:780365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crandon JL, Nicolau DP (2013) Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-β-lactamase producers. Antimicrob Agents Chemother 57(7):3299–3306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sy SKB, Derendorf H (2018) Experimental design and modelling approach to evaluate efficacy of β-lactam/β-lactamase inhibitor combinations. Clin Microbiol Infect 24(7):707–715

Article  CAS  PubMed  Google Scholar 

Eltzschig HK, Weissmüller T, Mager A, Eckle T (2006) Nucleotide metabolism and cell-cell interactions. Methods Mol Biol 341:73–87

CAS  Google Scholar 

Warner DF, Evans JC, Mizrahi V (2014) Nucleotide metabolism and DNA replication. Microbiol Spectr 2(5):5

Article  Google Scholar 

Pankey GA, Sabath LD (2004) Clinical relevance of Bacteriostatic versus Bactericidal mechanisms of Action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38(6):864–870

Article  CAS  PubMed  Google Scholar 

Finberg RW, Moellering RC, Tally FP, Craig WA, Pankey GA, Dellinger EP, West MA, Joshi M, Linden PK, Rolston KV, Rotschafer JC, Rybak MJ (2004) The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis 39(9):1314–1320

Article  CAS  PubMed  Google Scholar 

Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

Article  CAS  PubMed  Google Scholar 

Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55(4):561–585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN (2004) SOS response induction by ß-Lactams and bacterial defense against antibiotic lethality. Science 305(5690):1629–1631

Article  CAS  PubMed  Google Scholar 

Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794(5):808–816

Article  CAS  PubMed  Google Scholar 

MacNair Craig R, Brown Eric D (2020) Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. mBio 11(5):01615–01620

Google Scholar 

Ayoub Moubareck C (2020) Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membr 10(8):8

Google Scholar 

Livermore DM, Mushtaq S, Warner M, Miossec C, Woodford N (2008) NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum beta-lactamases and carbapenemases. J Antimicrob Chemother 62(5):1053–1056

Article  CAS  PubMed  Google Scholar 

Stachyra T, Levasseur P, Pechereau MC, Girard AM, Claudon M, Miossec C, Black MT (2009) In vitro activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 64(2):326–329

Article 

Comments (0)

No login
gif