Automated assessment of mental workload from PPG sensor data using cross-wavelet coherence and transfer learning

Gupta S, Singh A, Sharma A, Tripathy RK. Higher order derivative-based integrated model for cuff-less blood pressure estimation and stratification using PPG signals. IEEE Sens J. 2022;22(22):22030–9.

Article  Google Scholar 

Gupta S, Singh A, Sharma A. Exploiting moving slope features of PPG derivatives for estimation of mean arterial pressure. Biomed Eng Lett. 2022;13:1–9.

Article  Google Scholar 

Chang H-H, et al. A method for respiration rate detection in wrist PPG signal using Holo-Hilbert spectrum. IEEE Sens J. 2018;18(18):7560–9. https://doi.org/10.1109/JSEN.2018.2855974.

Article  Google Scholar 

Gupta S, Singh A, Sharma A, Tripathy RK. DSVRI: a PPG-based novel feature for early diagnosis of type-II diabetes mellitus. IEEE Sens Lett. 2022;6(9):1–4.

Article  Google Scholar 

Shresth G, Anurag S, Abhishek S. CIsense: an automated framework for early screening of cerebral infarction using PPG sensor data. Biomed Eng Lett. 2023;14:199–207.

Google Scholar 

Schaule F, Johanssen JO, Bruegge B, Loftness V. Employing consumer wearables to detect office workers’ cognitive load for interruption management. Proc ACM Interact Mobile Wearable Ubiquitous Technol. 2018;2(1):1–20.

Article  Google Scholar 

Jaiswal D, Chowdhury A, Chatterjee D, Gavas R. Unobtrusive smart-watch based approach for assessing mental workload. In IEEE Region 10 Symposium (TENSYMP). IEEE. 2019;2019:304–9.

Beh W-K, Wu Y-H, Andy A-YW. Robust PPG-based mental workload assessment system using wearable devices. IEEE J Biomed Health Inform. 2021;27:2323–33.

Article  Google Scholar 

Aydemir T, Şahin M, Aydemir O. Sequential forward mother wavelet selection method for mental workload assessment on N-back task using photoplethysmography signals. Infrared Phys Technol. 2021;119: 103966.

Article  Google Scholar 

Kakkos I, et al. Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Trans Neural Syst Rehabil Eng. 2019;27(9):1704–13. https://doi.org/10.1109/TNSRE.2019.2930082.

Article  Google Scholar 

Rubio S, Díaz E, Martín J, Puente JM. Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl Psychol. 2004;53(1):61–86.

Article  Google Scholar 

Pergher V, Wittevrongel B, Tournoy J, Schoenmakers B, Hulle MMV. Mental workload of young and older adults gauged with ERPs and spectral power during N-Back task performance. Biol Psychol. 2019;146: 107726.

Article  Google Scholar 

Massaro S, Pecchia L. Heart rate variability (HRV) analysis: a methodology for organizational neuroscience. Organ Res Methods. 2019;22(1):354–93.

Article  Google Scholar 

Qu H, Gao X, Pang L. Classification of mental workload based on multiple features of ECG signals. Inform Med Unlocked. 2021;24: 100575.

Article  Google Scholar 

Smital L, et al. Real-time quality assessment of long-term ECG signals recorded by wearables in free-living conditions. IEEE Trans Biomed Eng. 2020;67(10):2721–34. https://doi.org/10.1109/TBME.2020.2969719.

Article  Google Scholar 

Gupta K, Bajaj V. A robust framework for automated screening of diabetic patient using ecg signals. IEEE Sens J. 2022;22(24):24222–9.

Article  Google Scholar 

Beh W-K, Yi-Hsuan W. MAUS: a dataset for mental workload assessmenton N-back task using wearable sensor. arXiv:2111.02561 2021

Gupta S, Anurag S, Abhishek S. Exploiting moving slope features of PPG derivatives for estimation of mean arterial pressure. Biomed Eng Lett. 2022;13:1–9.

Article  Google Scholar 

Gupta S, Singh A, Sharma A. Denoising and analysis of PPG acquired from different body sites using Savitzky Golay filter. In TENCON 2022-2022 IEEE region 10 conference (TENCON). IEEE, 2022; pp. 1–4

Gupta S, Singh A, Sharma A. Denoising and analysis of PPG acquired from different body sites using Savitzky Golay filter. TENCON 2022–2022 IEEE region 10 conference (TENCON), Hong Kong, Hong Kong, 2022; pp. 1–4. https://doi.org/10.1109/TENCON55691.2022.9978083.

Plett MI. Transient detection with cross wavelet transforms and wavelet coherence. IEEE Trans Signal Process. 2007;55(5):1605–11.

Article  MathSciNet  Google Scholar 

Lachaux JP, Lutz A, Rudrauf D, Cosmelli D, Le Van Quyen M, Martinerie J, Varela F. Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol Clin Clin Neurophysiol. 2002;32(3):157–74.

Article  Google Scholar 

Gupta K, Bajaj V, Ansari IA. "Integrated S-transform-based learning system for detection of arrhythmic fetus." in IEEE Trans Instrum Meas. 2023;72:1–8. https://doi.org/10.1109/TIM.2023.3271739.

Article  Google Scholar 

Cao J, Yan M, Jia Y, Tian X, Zhang Z. Application of a modified Inception-v3 model in the dynasty-based classification of ancient murals. EURASIP J Adv Signal Process. 2021;2021(1):1–25.

Article  Google Scholar 

Ekiz D, Can YS, Ersoy C. Long short-term memory network based unobtrusive workload monitoring with consumer grade smartwatches. IEEE Trans Affect Comput. 2023;14(2):895–905. https://doi.org/10.1109/TAFFC.2021.3110211.

Article  Google Scholar 

Pan JS, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.

Article  Google Scholar 

Comments (0)

No login
gif