Unsupervised spike sorting for multielectrode arrays based on spike shape features and location methods

Miller EK, Wilson MA. All my circuits: using multiple electrodes to understand functioning neural networks. Neuron. 2008;60(3):483–8. https://doi.org/10.1016/j.neuron.2008.10.033.

Article  Google Scholar 

Steinmetz NA, Koch C, Harris KD, Carandini M. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Curr Opin Neurobiol. 2018;50:92–100. https://doi.org/10.1016/j.conb.2018.01.009.

Article  Google Scholar 

Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O’Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O’Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science. 2021;372(6539):eabf4588. https://doi.org/10.1126/science.abf4588.

Article  Google Scholar 

Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, Grosmark A, Belluscio M, Denfield GH, Ecker AS, Tolias AS, Solomon S, Buzsáki G, Carandini M, Harris KD. Spike sorting for large, dense electrode arrays. Nat Neurosci. 2016;19(4):634–41. https://doi.org/10.1038/nn.4268.

Article  Google Scholar 

Yger P, Spampinato G, Esposito E, Lefebvre B, Deny S, Gardella C, Stimberg M, Jetter F, Zeck G, Picaud S, Duebel J, Marre O. A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo. eLife. 2018. https://doi.org/10.7554/eLife.34518.

Article  Google Scholar 

tridesclous/tridesclous (2024) https://github.com/tridesclous/tridesclous. Original-date: 2015-11-10T14:06:13Z

Diggelmann R, Fiscella M, Hierlemann A, Franke F. Automatic spike sorting for high-density microelectrode arrays. J Neurophysiol. 2018;120(6):3155–71. https://doi.org/10.1152/jn.00803.2017.

Article  Google Scholar 

Hilgen G, Sorbaro M, Pirmoradian S, Muthmann JO, Kepiro IE, Ullo S, Ramirez CJ, Puente Encinas A, Maccione A, Berdondini L, Murino V, Sona D, Cella Zanacchi F, Sernagor E, Hennig MH. Unsupervised spike sorting for large-scale, high-density multielectrode arrays. Cell Rep. 2017;18(10):2521–32. https://doi.org/10.1016/j.celrep.2017.02.038.

Article  Google Scholar 

Muthmann JO, Amin H, Sernagor E, Maccione A, Panas D, Berdondini L, Bhalla US, Hennig MH. Spike detection for large neural populations using high density multielectrode arrays. Front Neuroinformatics. 2015. https://doi.org/10.3389/fninf.2015.00028.

Article  Google Scholar 

Pachitariu M, Sridhar S, Pennington J, Stringer C. Spike sorting with Kilosort4. Nat Methods. 2024. https://doi.org/10.1038/s41592-024-02232-7.

Article  Google Scholar 

Buccino AP, et al. Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification. J Neurophysiol. 2018. https://doi.org/10.1152/jn.00210.2018.

Article  Google Scholar 

Peyrache A, Dehghani N, Eskandar EN, Madsen JR, Anderson WS, Donoghue JA, Hochberg LR, Halgren E, Cash SS, Destexhe A. Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc Natl Acad Sci. 2012;109(5):1731–6. https://doi.org/10.1073/pnas.1109895109.

Article  Google Scholar 

Adamos DA, Kosmidis EK, Theophilidis G. Performance evaluation of PCA-based spike sorting algorithms. Comput Methods Programs Biomed. 2008;91(3):232–44. https://doi.org/10.1016/j.cmpb.2008.04.011.

Article  Google Scholar 

Hojjatinia S, Lagoa CM. Comparison of different spike sorting subtechniques based on rat brain basolateral amygdala neuronal activity. In: 2019 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, San Diego; 2019. pp. 2251–2258. https://doi.org/10.1109/BIBM47256.2019.8982994

Buccino AP, Hagen E, Einevoll GT, Hafliger PD, Cauwenberghs G. Independent component analysis for fully automated multi-electrode array spike sorting. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Honolulu, HI; 2018. pp. 2627–2630. https://doi.org/10.1109/EMBC.2018.8512788

Nadian MH, Karimimehr S, Doostmohammadi J, Ghazizadeh A, Lashgari R. A fully automated spike sorting algorithm using t-distributed neighbor embedding and density based clustering. Neuroscience. 2018. https://doi.org/10.1101/418913.

Article  Google Scholar 

Hurwitz CL, Xu K, Srivastava A, Buccino AP, Hennig MH. Scalable spike source localization in extracellular recordings using amortized variational inference. Adv Neural Inf Process Syst. 2019. https://doi.org/10.1101/656389.

Article  Google Scholar 

Boussard J, Varol E, Lee HD, Dethe N, Paninski L. Three-dimensional spike localization and improved motion correction for Neuropixels recordings. Neural Inf Process Syst. 2021. https://doi.org/10.1101/2021.11.05.467503.

Article  Google Scholar 

Rey HG, Pedreira C, Quian QR. Past, present and future of spike sorting techniques. Brain Res Bull. 2015;119:106–17. https://doi.org/10.1016/j.brainresbull.2015.04.007.

Article  Google Scholar 

Buccino AP, Garcia S, Yger P. Spike sorting: new trends and challenges of the era of high-density probes. Prog Biomed Eng. 2022;4(2):022005. https://doi.org/10.1088/2516-1091/ac6b96..

Article  Google Scholar 

Buccino AP, Hurwitz CL, Garcia S, Magland J, Siegle HR, Hennig MH. SpikeInterface, a unified framework for spike sorting. eLife. 2020;9:e61834. https://doi.org/10.7554/eLife.61834.

Article  Google Scholar 

McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction; 2020. ArXiv:1802.03426 [cs, stat]

Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, Newell EW. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37(1):38–44. https://doi.org/10.1038/nbt.4314.

Article  Google Scholar 

Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–19. https://doi.org/10.1109/34.1000236.

Article  Google Scholar 

Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7.

Article  Google Scholar 

Eom J, Park IY, Kim S, Jang H, Park S, Huh Y, Hwang D. Deep-learned spike representations and sorting via an ensemble of auto-encoders. Neural Netw. 2021;134:131–42. https://doi.org/10.1016/j.neunet.2020.11.009.

Article  Google Scholar 

Caro-Martín CR, Delgado-García JM, Gruart A, Sánchez-Campusano R. Spike sorting based on shape, phase, and distribution features, and K-TOPS clustering with validity and error indices. Sci Rep. 2018;8(1):17796.

Article  Google Scholar 

Buccino AP, Einevoll GT. MEArec: a fast and customizable testbench simulator for ground-truth extracellular spiking activity. Neuroinformatics. 2021;19(1):185–204. https://doi.org/10.1007/s12021-020-09467-7.

Article  Google Scholar 

Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218. https://doi.org/10.1007/BF01908075.

Article  Google Scholar 

Milligan GW, Cooper MC. A study of the comparability of external criteria for hierarchical cluster analysis. Multivar Behav Res. 1986;21(4):441–58. https://doi.org/10.1207/s15327906mbr2104_5.

Article  Google Scholar 

Ghazal M, Scholaert C, Dumortier C, Lefebvre C, Barois N, Janel S, Tarhan MC, Colin M, Buée L, Halliez S, Pecqueur S, Coffinier Y, Alibart F, Yger P. Precision of neuronal localization in 2D cell cultures by using high-performance electropolymerized microelectrode arrays correlated with optical imaging. Biomed Phys Eng Express. 2023;9(3):035016. https://doi.org/10.1088/2057-1976/acb93e.

Article  Google Scholar 

Prentice JS, Homann J, Simmons KD, Tkačik G, Balasubramanian V, Nelson PC. Fast, scalable, bayesian spike identification for multi-electrode arrays. PLoS ONE. 2011;6(7):e19884. https://doi.org/10.1371/journal.pone.0019884.

Article  Google Scholar 

Neto JP, Lopes G, Frazão J, Nogueira J, Lacerda P, Baião P, Aarts A, Andrei A, Musa S, Fortunato E, Barquinha P, Kampff AR. Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. J Neurophysiol. 2016;116(2):892–903. https://doi.org/10.1152/jn.00103.2016.

Article  Google Scholar 

Comments (0)

No login
gif