Facial electromyogram-based emotion recognition for virtual reality applications using machine learning classifiers trained on posed expressions

Cornelius RR. The science of emotion: Research and tradition in the psychology of emotions. Englewood Cliffs, NJ, US: Prentice-Hall, Inc; 1996. xii, 260 p. (The science of emotion: Research and tradition in the psychology of emotions).

Marín-Morales J, Llinares C, Guixeres J, Alcañiz M. Emotion recognition in immersive virtual reality: from statistics to affective computing. Sensors. 2020;20(18):5163.

Article  Google Scholar 

Yu M, Xiao S, Hua M, Wang H, Chen X, Tian F, et al. EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features. Biomed Signal Process Control. 2022;1(72): 103349.

Article  Google Scholar 

Saxena A, Khanna A, Gupta D. Emotion recognition and detection methods: a comprehensive survey. J Artif Intell Syst. 2020;2(1):53–79.

Google Scholar 

Freeman G, Maloney D. Body, avatar, and me: the presentation and perception of self in social virtual reality. Proc ACM Human-Comput Interact. 2021;4(CSCW3):1–27. https://doi.org/10.1145/3432938.

Article  Google Scholar 

Steed A, Pan Y, Zisch F, Steptoe W. The impact of a self-avatar on cognitive load in immersive virtual reality. In: 2016 IEEE Virtual Reality (VR) [Internet]. 2016 [cited 2024 Mar 28]. p. 67–76. Available from: https://ieeexplore.ieee.org/abstract/document/7504689

Sourina O, Liu Y, Nguyen MK. Real-time EEG-based emotion recognition for music therapy. J Multimodal User Interfaces. 2012;5(1):27–35.

Article  Google Scholar 

Allcoat D, Mühlenen A von. Learning in virtual reality: Effects on performance, emotion and engagement. Research in Learning Technology [Internet]. 2018 Nov 27 [cited 2024 Mar 28];26. Available from: https://journal.alt.ac.uk/index.php/rlt/article/view/2140

Yang D, Alsadoon A, Prasad PWC, Singh AK, Elchouemi A. An emotion recognition model based on facial recognition in virtual learning environment. Procedia Comput Sci. 2018;1(125):2–10.

Article  Google Scholar 

Yannakakis G, Hallam J. Real-time game adaptation for optimizing player satisfaction. Comput Intell AI Games IEEE Trans. 2009;1(1):121–33.

Article  Google Scholar 

Kumari J, Rajesh R, Pooja KM. Facial expression recognition: a survey. Procedia Comput Sci. 2015;1(58):486–91.

Article  Google Scholar 

Dzedzickis A, Kaklauskas A, Bucinskas V. Human emotion recognition: review of sensors and methods. Sensors. 2020;20(3):592. https://doi.org/10.3390/s20030592.

Article  Google Scholar 

Ahmed N, Aghbari ZA, Girija S. A systematic survey on multimodal emotion recognition using learning algorithms. Intell Syst Appl. 2023;17:200171. https://doi.org/10.1016/j.iswa.2022.200171.

Article  Google Scholar 

Suhaimi NS, Mountstephens J, Teo J. EEG-based emotion recognition: a state-of-the-art review of current trends and opportunities. Comput Intell Neurosci. 2020;16(2020): e8875426.

Google Scholar 

Jerritta S, Murugappan M, Wan K, Yaacob S. Emotion recognition from facial EMG signals using higher order statistics and principal component analysis. J Chin Inst Eng. 2014;37(3):385–94.

Article  Google Scholar 

Xu M, Cheng J, Li C, Liu Y, Chen X. Spatio-temporal deep forest for emotion recognition based on facial electromyography signals. Comput Biol Med. 2023;1(156): 106689.

Article  Google Scholar 

Campbell T, O’Brien E, Van Boven L, Schwarz N, Ubel P. Too much experience: a desensitization bias in emotional perspective taking. J Pers Soc Psychol. 2014;106(2):272–85.

Article  Google Scholar 

Cha HS, Im CH. Improvement of robustness against electrode shift for facial electromyogram-based facial expression recognition using domain adaptation in VR-based metaverse applications. Virtual Reality. 2023. https://doi.org/10.1007/s10055-023-00761-8.

Article  Google Scholar 

Cha HS, Choi SJ, Im CH. Real-time recognition of facial expressions using facial electromyograms recorded around the eyes for social virtual reality applications. IEEE Access. 2020;8:62065–75.

Article  Google Scholar 

Russell JA. A circumplex model of affect. J Pers Soc Psychol. 1980;39(6):1161–78.

Article  Google Scholar 

Mohammad S. Obtaining Reliable Human Ratings of Valence, Arousal, and Dominance for 20,000 English Words. In: Gurevych I, Miyao Y, editors. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) [Internet]. Melbourne, Australia: Association for Computational Linguistics; 2018 [cited 2024 Apr 5]. p. 174–84. Available from: https://aclanthology.org/P18-1017

Bradley MM, Lang PJ. Measuring emotion: the self-assessment manikin and the semantic differential. J Behav Ther Exp Psychiatry. 1994;25(1):49–59.

Article  Google Scholar 

Barachant A, Bonnet S, Congedo M, Jutten C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing. 2013;18(112):172–8.

Article  Google Scholar 

Barachant A, Bonnet S, Congedo M, Jutten C. Multiclass brain-computer interface classification by riemannian geometry. IEEE Trans Biomed Eng. 2012;59(4):920–8.

Article  Google Scholar 

Kim H, Kim S, Kim H, Ji Y, Im CH. Modulation of driver’s emotional states by manipulating in-vehicle environment: validation with biosignals recorded in an actual car environment. IEEE Trans Affect Comput. 2022;13(4):1783–92.

Article  Google Scholar 

Russo V, Bilucaglia M, Zito M. From virtual reality to augmented reality: a neuromarketing perspective. Front Psychol. 2022;9(13): 965499.

Article  Google Scholar 

Cha HS, Chang WD, Shin YS, Jang DP, Im CH. EEG-based neurocinematics: challenges and prospects. Brain-Comput Interfaces. 2015;2(4):186–92.

Article  Google Scholar 

Comments (0)

No login
gif