Harimoto T, Deb D, Danino T. A rapid screening platform to coculture bacteria within tumor spheroids. Nat Protoc. 2022;17(10):2216–39. https://doi.org/10.1038/s41596-022-00695-0.
Joo JH, Won M, Park SY, Park K, Shin D-S, Kim JS, Lee MH. A dicyanocoumarin-fused quinolinium based probe for NAD (P) H and its use for detecting Glycolysis and hypoxia in living cells and tumor spheroids. Sens Actuators B. 2020;320:128360. https://doi.org/10.1016/j.snb.2017.04.073.
Kim H, Koo K-M, Kim C-D, Byun MJ, Park CG, Son H, Kim H-R, Kim T-H. Simple and cost-effective generation of 3D cell sheets and spheroids using curvature-controlled paraffin wax substrates. Nano Converg. 2024;11(1):44. https://doi.org/10.1186/s40580-024-00451-4.
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 2023;10(1):48. https://doi.org/10.1186/s40580-023-00398-y.
Shortt RL, Wang Y, Hummon AB, Jones LM. Development of Spheroid-FPOP: an in-cell protein footprinting method for 3D tumor spheroids. J Am Soc Mass Spectrom. 2023;34(3):417–25. https://doi.org/10.1021/jasms.2c00307.
Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano-and micro-to macro-scale. Nano Converg. 2023;10(1):29. https://doi.org/10.1186/s40580-023-00377-3.
Okuyama K, Kaida A, Hayashi Y, Hayashi Y, Harada K, Miura M. KPU-300, a novel benzophenone–diketopiperazine–type anti-microtubule agent with a 2-pyridyl structure, is a potent radiosensitizer that synchronizes the cell cycle in early M phase. PLoS ONE. 2015;10(12):e0145995. https://doi.org/10.1371/journal.pone.0145995.
Osaki T, Kageyama T, Shimazu Y, Mysnikova D, Takahashi S, Takimoto S, Fukuda J. Flatbed Epi relief-contrast cellular monitoring system for stable cell culture. Sci Rep. 2017;7(1):1897. https://doi.org/10.1038/s41598-017-02001-x.
Pinto B, Henriques AC, Silva PM, Bousbaa H. Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics. 2020;12(12):1186. https://doi.org/10.3390/pharmaceutics12121186.
Kim D-H, Paek S-H, Choi D-Y, Lee M-K, Park J-N, Cho H-M, Paek S-H. Real-time monitoring of biomarkers in serum for early diagnosis of target disease. Biochip J. 2020;14:2–17. https://doi.org/10.1007/s13206-020-1400-0.
Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol. 2015;13(7):402–14. https://doi.org/10.1089/adt.2015.655.
Usaj MM, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ. High-content screening for quantitative cell biology. Trends Cell Biol. 2016;26(8):598–611. https://doi.org/10.1016/j.tcb.2016.03.010.
Yang K, Wu J, Santos S, Liu Y, Zhu L, Lin F. Recent development of portable imaging platforms for cell-based assays. Biosens Bioelectron. 2019;124:150–60. https://doi.org/10.1016/j.bios.2018.10.030.
Zeng Y, Jin K, Li J, Liu J, Li J, Li T, Li S. A low cost and portable smartphone microscopic device for cell counting. Sens Actuators A Phys. 2018;274:57–63. https://doi.org/10.1016/j.sna.2018.03.009.
Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, Li H, Wang P. Smartphone-based portable biosensing system using cell viability biosensor for Okadaic acid detection. Sens Actuators B. 2017;251:134–43. https://doi.org/10.1016/j.snb.2017.04.073.
Calabretta MM, Gregucci D, Guardigli M, Michelini E. Low-cost and sustainable smartphone-based tissue-on-chip device for bioluminescence biosensing. Biosens Bioelectron. 2024;261:116454. https://doi.org/10.1016/j.bios.2023.116454.
Dolega ME, Allier C, Kesavan SV, Gerbaud S, Kermarrec F, Marcoux P, Dinten J-M, Gidrol X, Picollet-D’Hahan N. Label-free analysis of prostate acini-like 3D structures by lensfree imaging. Biosens Bioelectron. 2013;49:176–83. https://doi.org/10.1016/j.bios.2013.05.010.
Luo Z, Yurt A, Stahl R, Carlon MS, Ramalho AS, Vermeulen F, Lambrechts A, Braeken D, Lagae L. Fast compressive lens-free tomography for 3D biological cell culture imaging. Opt Express. 2020;28(18):26935–52. https://doi.org/10.1364/OE.393492.
Rodríguez-Pena A, Uranga-Solchaga J, Ortiz-de-Solorzano C, Cortés-Domínguez I. Spheroscope: a custom-made miniaturized microscope for tracking tumour spheroids in microfluidic devices. Sci Rep. 2020;10(1):2779. https://doi.org/10.1038/s41598-020-59780-0.
Kaya M, Stein F, Rouwkema J, Khalil IS, Misra S. Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy. PLoS ONE. 2021;16(6):e0253222. https://doi.org/10.1371/journal.pone.0253222.
Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, Park SD, Shim J-J, Lee J, Chung BG. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. Nano Convergence. 2024;11(1):7. https://doi.org/10.1186/s40580-024-00413-w.
Azizipour N, Avazpour R, Weber MH, Sawan M, Ajji A, Rosenzweig DH. Uniform tumor spheroids on surface-optimized microfluidic biochips for reproducible drug screening and personalized medicine. Micromachines. 2022;13(4):587. https://doi.org/10.3390/mi13040587.
Chen W, Wong C, Vosburgh E, Levine AJ, Foran DJ, Xu EY. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. JoVE J. Vis. Exp. 2014;e51639. https://doi.org/10.3791/51639.
Choi JW, Seo WH, Lee YS, Kim SY, Kim BS, Lee KG, Lee SJ, Chung BG. Development of an IoT-integrated multiplexed digital PCR system for quantitative detection of infectious diseases. Lab Chip. 2022;22(20):3933–41. https://doi.org/10.1038/s41378-022-00414-0.
Lee JM, Choi JW, Ahrberg CD, Choi HW, Ha JH, Mun SG, Mo SJ, Chung BG. Generation of tumor spheroids using a droplet-based microfluidic device for photothermal therapy. Microsyst Nanoeng. 2020;6(1):52. https://doi.org/10.1038/s41378-020-00167-x.
Sart S, R F-X Tomasi G, Amselem, Baroud CN. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat Commun. 2017;8(1):469. https://doi.org/10.1038/s41467-017-00475-x.
Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012.
Nath S, Devi GR. Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013.
Musiałek MW, Rybaczek D. Hydroxyurea—the good, the bad and the ugly. Genes. 2021;12(7):1096. https://doi.org/10.3390/genes12071096.
Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun. 2013;4(1):1908. https://doi.org/10.1038/ncomms2921.
Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and Daunorubicin. Biochem Pharmacol. 1999;57(7):727–41. https://doi.org/10.1016/S0006-2952(98)00307-4.
Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL. Structural basis of type II topoisomerase Inhibition by the anticancer drug etoposide. Science. 2011;333(6041):459–62. https://doi.org/10.1126/science.1204117.
Lee JM, Park DY, Yang L, Kim E-J, Ahrberg CD, Lee K-B, Chung BG. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep. 2018;8(1):17145. https://doi.org/10.1038/s41598-018-35216-7.
Chen G, Liu W, Yan B. Breast cancer MCF-7 cell spheroid culture for drug discovery and development. J cancer Ther. 2022;13(3):117. https://doi.org/10.4236/jct.2022.133011.
Pulze L, Congiu T, Brevini TA, Grimaldi A, Tettamanti G, D’antona P, Baranzini N, Acquati F, Ferraro F, de Eguileor M. MCF7 spheroid development: new insight about Spatio/temporal arrangements of TNTs, amyloid fibrils, cell connections, and cellular bridges. Int J Mol Sci. 2020;21(15):5400. https://doi.org/10.3390/ijms21155400.
Ralph ACL, I C Valadão EC, Cardoso VR, Martins LMS, Oliveira EMAF, Bevilacqua MV, Geraldo RG, Jaeger GS, Goldberg, Freitas VM. Environmental control of mammary carcinoma cell expansion by acidification and spheroid formation in vitro. Sci Rep. 2020;10(1):21959. https://doi.org/10.1038/s41598-020-78920-0.
Šaban N, Stepanić V, Vučinić S, Horvatić A, Cindrić M, Perković I, Zorc B, Oršolić N, Mintas M, Pavelić K. Antitumor mechanisms of amino acid hydroxyurea derivatives in the metastatic colon cancer model. Int J Mol Sci. 2013;14(12):23654–71. https://doi.org/10.3390/ijms141223654.
Singh A, Xu Y-J. The cell killing mechanisms of hydroxyurea. Genes. 2016;7(11):99.
Comments (0)