Multi-physics simulations for investigating the effect of electrode conditions on transscleral ocular iontophoresis for particulate drug delivery into ocular tissues

Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev. 1995;16(1):3–19.

Article  Google Scholar 

Gote V, et al. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–24.

Article  Google Scholar 

Waite D, et al. Posterior drug delivery via periocular route: challenges and opportunities. Therapeutic Delivery. 2017;8(8):685–99.

Article  Google Scholar 

Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Controlled Release. 2006;110(3):479–89.

Article  Google Scholar 

Güngör S, et al. Trans-scleral iontophoretic delivery of low molecular weight therapeutics. J Controlled Release. 2010;147(2):225–31.

Article  Google Scholar 

Li SK, Hao J. Transscleral passive and iontophoretic transport: theory and analysis. Expert Opin Drug Deliv. 2018;15(3):283–99.

Article  Google Scholar 

Eljarrat-Binstock E, et al. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Controlled Release. 2005;106(3):386–90.

Article  Google Scholar 

Cohen AE, et al. Evaluation of dexamethasone phosphate delivered by ocular iontophoresis for treating noninfectious anterior uveitis. Ophthalmology. 2012;119(1):66–73.

Article  Google Scholar 

O’Neil EC, et al. Iontophoretic delivery of dexamethasone phosphate for non-infectious, non-necrotising anterior scleritis, dose-finding clinical trial. Br J Ophthalmol. 2018;102(8):1011–3.

Article  Google Scholar 

Bourne RR, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Global Health. 2017;5(9):e888–97.

Article  Google Scholar 

Kim SH, et al. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39(5):244–54.

Article  Google Scholar 

Wang R et al. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target, 2021: p. 1–35.

Luo L, et al. Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Controlled Release. 2019;296:68–80.

Article  Google Scholar 

Qiu F, et al. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol Pharm. 2019;16(5):1958–70.

Article  Google Scholar 

Faria P, Hallett M, Miranda PC. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng. 2011;8(6):066017.

Article  Google Scholar 

Choi DS, Lee S. Optimizing electrode placement for transcranial direct current stimulation in nonsuperficial cortical regions: a computational modeling study. Biomed Eng Lett, 2023: p. 1–11.

Miranda PC, Faria P, Hallett M. What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? Clin Neurophysiol. 2009;120(6):1183–7.

Article  Google Scholar 

Filipovic N, et al. Computational and experimental model of transdermal iontophorethic drug delivery system. Int J Pharm. 2017;533(2):383–8.

Article  Google Scholar 

Bora DJ, Dasgupta R. Numerical simulation of iontophoresis for in-silico prediction of transdermal drugs in the dermal layers using skin impedance values. Volume 214. Computer Methods and Programs in Biomedicine; 2022. p. 106551.

Ciuculete DM, Morega AM. Numerical simulation of transdermal transport through iontophoresis. in 2015 E-Health and Bioengineering Conference (EHB). 2015. IEEE.

Naghipoor J, Jafary N, Rabczuk T. Mathematical and computational modeling of drug release from an ocular iontophoretic drug delivery device. Int J Heat Mass Transf. 2018;123:1035–49.

Article  Google Scholar 

Missel PJ, Horner M, Muralikrishnan R. Simulating dissolution of intravitreal triamcinolone acetonide suspensions in an anatomically accurate rabbit eye model. Pharm Res. 2010;27(8):1530–46.

Article  Google Scholar 

Srikantha N, et al. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion. Exp Eye Res. 2012;102:85–92.

Article  Google Scholar 

Kathawate J, Acharya S. Computational modeling of intravitreal drug delivery in the vitreous chamber with different vitreous substitutes. Int J Heat Mass Transf. 2008;51(23–24):5598–609.

Article  Google Scholar 

Zhang F, Chen H, Huang Y. Computer modeling of drug delivery in the anterior human eye after subconjunctival and episcleral implantation. Comput Biol Med. 2017;89:162–9.

Article  Google Scholar 

Lee S et al. In-vivo estimation of tissue electrical conductivities of a rabbit eye for precise simulation of electric field distributions during ocular iontophoresis. Int J Numer Methods Biomed Eng, 2021: p. e3540.

Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage. 2011;54(1):234–43.

Article  Google Scholar 

Kavousanakis ME, Kalogeropoulos NG, Hatziavramidis DT. Computational modeling of drug delivery to the posterior eye. Chem Eng Sci. 2014;108:203–12.

Article  Google Scholar 

Mishima S, et al. Determination of tear volume and tear flow. Investig Ophthalmol Vis Sci. 1966;5(3):264–76.

Google Scholar 

Cu Y, Saltzman WM. Controlled surface modification with poly (ethylene) glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm. 2009;6(1):173–81.

Article  Google Scholar 

Missel PJ. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 2012;29(12):3251–72.

Article  Google Scholar 

Lee S, et al. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models. Sci Rep. 2020;10(1):1–11.

MathSciNet  Google Scholar 

Lee C, et al. COMETS2: an advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. J Neurosci Methods. 2017;277:56–62.

Article  Google Scholar 

Reckow J, et al. Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimul. 2018;11(5):991–7.

Article  Google Scholar 

Kim S-N, et al. Iontophoretic delivery of dexamethasone-loaded nanoparticles to the anterior segment of the eye. J Ind Eng Chem. 2022;116:199–206.

Article  Google Scholar 

Guler S, et al. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS). J Neural Eng. 2016;13(3):036020.

Article  Google Scholar 

Lee S, et al. Multi-channel transorbital electrical stimulation for effective stimulation of posterior retina. Sci Rep. 2021;11(1):1–11.

MathSciNet  Google Scholar 

Haberbosch L, et al. Safety aspects, tolerability and modeling of retinofugal alternating current stimulation. Front NeuroSci. 2019;13:783.

Article  Google Scholar 

Laakso I, et al. Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 2015;8(5):906–13.

Article  Google Scholar 

Comments (0)

No login
gif