Dello Russo A, et al. Role of Intracardiac echocardiography in atrial fibrillation ablation. J Atr Fibrillation. 2013;5(6):786.
Bartel T, et al. Why is intracardiac echocardiography helpful? Benefits, costs, and how to learn. Eur Heart J. 2014;35(2):69.
Enriquez A, et al. Use of intracardiac echocardiography in interventional cardiology: working with the anatomy rather than fighting it. Circulation. 2018;137(21):2278–94.
Baykaner T, et al. Safety and efficacy of zero fluoroscopy transseptal puncture with different approaches. Pacing Clin Electrophysiol. 2020;43(1):12–8.
Razminia M, et al. Fluoroless catheter ablation of cardiac arrhythmias: a 5-year experience. Pace-Pacing and Clin Electrophysiol. 2017;40(4):425–33.
Aldhoon B, et al. Complications of catheter ablation for atrial fibrillation in a high-volume centre with the use of intracardiac echocardiography. Europace. 2013;15(1):24–32.
Pham TH, Singh GD. 3D Intracardiac Echocardiography for Structural Heart Interventions. Interv Cardiol Clin. 2024;13(1):11–7.
Bertrand PB, et al. Fact or Artifact in Two-Dimensional Echocardiography: Avoiding Misdiagnosis and Missed Diagnosis. J Am Soc Echocardiogr. 2016;29(5):381–91.
Ma C, et al. Understanding the scope of intracardiac echocardiography in catheter ablation of ventricular arrhythmia. Front Cardiovasc Med. 2022;9:1037176.
Bae S, Song TK. Methods for grating lobe suppression in ultrasound plane wave imaging. Appl Sci-Basel. 2018;8(10):1881.
Oezel L, et al. Midterm development of ultrasound-unstable hip joints after overhead traction and treatment with tubingen splint and fettweis plaster: a radiologic follow-up analysis over 5.5 years. J Pediatr Orthop. 2023;43(7):e545–53.
Agarwal A, et al. Improving spatial resolution using incoherent subtraction of receive beams having different apodizations. IEEE Trans Ultrason Ferroelectr Freq Control. 2019;66(1):5–17.
Article MathSciNet Google Scholar
Kou ZC, Miller RJ, Oelze ML. Grating lobe reduction in plane-wave imaging with angular compounding using subtraction of coherent signals. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(12):3308–16.
Li PC, Li ML. Adaptive imaging using the generalized coherence factor. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(2):128–41.
Camacho J, Parrilla M, Fritsch C. Phase coherence imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(5):958–74.
Lindsey BD, et al. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging. Ultrasonics. 2016;70:123–35.
Matrone G, et al. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans Med Imaging. 2015;34(4):940–9.
Mozaffarzadeh M, et al. Efficient nonlinear beamformer based on P’th root of detected signals for linear-array photoacoustic tomography: application to sentinel lymph node imaging. J Biomed Opt. 2018;23(12):121604–121604.
Jeon S, et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. Photoacoustics. 2019;15: 100136.
KaramFard, S.S. and B.M. Asl, 2-Stage Delay-Multiply-And-Sum Beamforming for Breast Cancer Detection Using Microwave Imaging. 2017 25th Iranian Conference on Electrical Engineering (ICEE), 2017: pp 101–106.
Park J, et al. Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy. J Biomed Opt. 2016;21(3):36010.
Choi W, Oh D, Kim C. Practical photoacoustic tomography: realistic limitations and technical solutions. J Appl Phys. 2020;127(23):230903.
Yang G, Amidi E, Zhu Q. Photoacoustic tomography reconstruction using lag-based delay multiply and sum with a coherence factor improves in vivo ovarian cancer diagnosis. Biomed Opt Express. 2021;12(4):2250–63.
Cho S, et al. Nonlinear pth root spectral magnitude scaling beamforming for clinical photoacoustic and ultrasound imaging. Opt Lett. 2020;45(16):4575–8.
Proulx, T.L., D. Tasker, and J. Bartlett-Roberto, Advances in catheter-based ultrasound imaging -: Intracardiac echocardiography and the ACUSON AcuNav™ ultrasound catheter. 2005 IEEE Ultrasonics Symposium, Vols 1–4, 2005: pp 669–678.
Jeon S, et al. A novel 2-D synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy. IEEE Trans Med Imaging. 2019;38(1):250–60.
Rodriguez-Molares A, et al. The generalized contrast-to-noise ratio: a formal definition for lesion detectability. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(4):745–59.
Zheng Y, et al. Ultrasonic methods for brain imaging: techniques and implications. IEEE Trans Biomed Eng. 2022;69(11):3526–37.
Ozsoy C, et al. Ultrafast four-dimensional imaging of cardiac mechanical wave propagation with sparse optoacoustic sensing. Proc National Acad Sci United States Am. 2021;118(45):e2103979118.
Choi W, et al. Clinical photoacoustic imaging platforms. Biomed Eng Lett. 2018;8(2):139–55.
Madhavanunni AN, Panicker MR. A nonlinear beamforming for enhanced spatiotemporal sensitivity in high frame rate ultrasound flow imaging. Comput Biol Med. 2022;147: 105686.
Perdios D, et al. CNN-based ultrasound image reconstruction for ultrafast displacement tracking. IEEE Trans Med Imaging. 2021;40(3):1078–89.
Madiena C, et al. Color and Vector Flow Imaging in Parallel Ultrasound With Sub-Nyquist Sampling. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(5):795–802.
Posada D, et al. Staggered Multiple-PRF Ultrafast Color Doppler. IEEE Trans Med Imaging. 2016;35(6):1510–21.
Ecarlat, P., et al., BB p-DAS, an extension of p-DAS to baseband domain for Doppler imaging. 2022 IEEE International Ultrasonics Symposium (IEEE Ius), 2022.
Garcia D. SIMUS: an open-source simulator for medical ultrasound imaging Part I: Theory & examples. Comput Methods Programs Biomed. 2022;218:106726.
Jeon S, et al. Real-time delay-multiply-and-sum beamforming with coherence factor for clinical photoacoustic imaging of humans. Photoacoustics. 2019;15:100136.
Lee Y, Kang J, Yoo Y. Automatic dynamic range adjustment for ultrasound B-mode imaging. Ultrasonics. 2015;56:435–43.
Jongbloed MR, et al. Clinical applications of intracardiac echocardiography in interventional procedures. Heart. 2005;91(7):981–90.
Duarte-Salazar CA, et al. Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: an overview. IEEE Access. 2020;8:15983–99.
Ouahabi, A., A review of wavelet denoising in medical imaging. In: 2013 8th international workshop on systems, signal processing and their applications (Wosspa), 2013: pp 19-26
Karaoglu O, Bilge HS, Uluer I. Removal of speckle noises from ultrasound images using five different deep learning networks. Eng Sci Technol-an Int J-Jestech. 2022;29:101030.
Comments (0)