Sun W, Lin JW, Su SF, Wang N, Er MJ. Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Transact Cybernetics. 2021;51(3):1099–109.
Li Z, Zhao K, Zhang L, Wu X, Su CY. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking. IEEE/ASME Trans Mechatron. 2021;26(5):2700–11.
Ma Y, Wu XY, Yang SX, Dang C. Online gait planning of lower-limb exoskeleton robot for paraplegic rehabilitation considering weight transfer process. IEEE Trans Autom Sci Eng. 2021;18(2):414–25.
Anderson AJ, Hudak YF, Muir BC, Aubin PM. Design, control, and evaluation of a robotic ankle-foot prosthesis emulator. IEEE Transact Med Robot Bionics. 2023;5(3):741–52.
Zheng E, Wang Q, Qiao H. Locomotion mode recognition with robotic transtibial prosthesis in inter-session and inter-day applications. IEEE Transact Neural Syst Rehabilitation Eng. 2019;27(9):1836–45.
Li XL, Hao YF, Zhang JH, Wang C, Li D, Zhang JJ. Design, modeling and experiments of a variable stiffness soft robotic glove for stroke patients with clenched fist deformity. IEEE Robot Autom Lett. 2023;8(7):4044–51.
Gao Y, Jia B, Houston M, Zhang Y. Hybrid EEG-fNIRS brain computer interface based on common spatial pattern by using EEG-informed general linear model. IEEE Trans Instrum Meas. 2023;72:1–10.
Huang C, Xiao Y, Xu G. Predicting human intention-behavior through EEG signal analysis using multi-scale CNN. IEEE/ACM Trans Comput Biol Bioinf. 2021;18(5):1722–9.
Elsayed NE, Tolba AS, Rashad MZ, Belal T, Sarhan S. A deep learning approach for brain computer interaction-motor execution EEG signal classification. IEEE Access. 2021;9:101513–29.
Park S, Lee D, Chung WK, Kim K. Hierarchical motion segmentation through sEMG for continuous lower limb motions. IEEE Robot Autom Lett. 2019;4(4):4402–9.
Ryu J, Kim DH. Real-time gait subphase detection using an EMG signal graph matching (ESGM) algorithm based on EMG signals. Expert Syst Appl. 2017;85:357–65.
Gautam A, Panwar M, Biswas D, Acharyya A. MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG. IEEE J Transl Eng Health Med. 2020;8:1–10.
Shi X, Qin P, Zhu J, Zhai M, Shi W. Feature extraction and classification of lower limb motion based on sEMG signals. IEEE Access. 2020;8:132882–92.
Kang I, Molinaro DD, Choi G, Camargo J, Young AJ. Subject-independent continuous locomotion mode classification for robotic hip exoskeleton applications. IEEE Trans Biomed Eng. 2022;69(10):3234–42.
Su BY, Wang J, Liu SQ, Sheng M, Xiang K. An improved motion intent recognition method for intelligent lower limb prosthesis driven by inertial motion capture data. Acta Autom Sin. 2018;46(7):1517–30.
Su BY, Wang J, Liu SQ. A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):1032–42.
Narayan A, Reyes FA, Ren M, Haoyong Y. Real-time hierarchical classification of time series data for locomotion mode detection. IEEE J Biomed Health Inform. 2022;26(4):1749–60.
Papapicco V, Chen B. A classification approach based on directed acyclic graph to predict locomotion activities with one inertial sensor on the thigh. IEEE Transact Med Robot Bionics. 2021;3(2):436–45.
Attal F, Amirat Y, Chibani A, Mohammed S. Automatic recognition of gait phases using a multiple-regression hidden markov model. IEEE/ASME Trans Mechatron. 2018;23(4):1597–607.
Huang L, Zheng J, Hu H. A gait phase detection method in complex environment based on DTW-mean templates. IEEE Senors J. 2021;21(13):15114–23.
Hu H, Zheng JB, Zhan E, Yu L. Curve similarity model for real-time gait phase detection based on ground contact forces. Sensors. 2019;19:3235.
Cui C, Bian G, Hou Z, Zhao J. A multimodal framework based on integration of cortical and muscular activities for decoding human intentions about lower limb motions. IEEE Trans Biomed Circuits Syst. 2017;11(4):889–99.
Tucker MR. Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil. 2015;12(1):1–29.
Godiyal AK, Mondal M, Joshi SD. Force myography based novel strategy for locomotion classification. IEEE Transact Human-Machine Syst. 2018;48(6):648–57.
Al-Quraishi MS, Elamvazuthi I, Tang TB. Multimodal fusion approach based on EEG and EMG signals for lower limb movement recognition. IEEE Senors Journal. 2021;21(24):27640–50.
Wang Y, Cheng X, Jabban L, Sui X. Motion intention prediction and joint trajectories generation toward lower limb prostheses using EMG and IMU signals. IEEE Senors J. 2022;22(11):10719–29.
Camargo J, Flanagan W, Csomay-Shanklin N, Kanwar B, Young A. A machine learning strategy for locomotion classification and parameter estimation using fusion of wearable sensors. IEEE Trans Biomed Eng. 2021;68(5):1569–78.
Cui C, Bian GB, Hou ZG, Zhao J, Su GD, Zhou H, Peng L, Wang WQ. Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Transact Neural Syst Rehabil Eng. 2018;26(4):856–64.
Zhao Y, Wang J, Zhang Y, Liu H. Flexible and wearable EMG and PSD sensors enabled locomotion mode recognition for IoHT-based in-home rehabilitation. IEEE Senors J. 2021;21(23):26311–9.
Sun Y, Lo B. An artificial neural network framework for gait-based biometrics. IEEE J Biomed Health Inform. 2019;23(3):987–98.
Zhang K, Wang J, De Silva CW, Fu CL. Unsupervised cross-subject adaptation for predicting human locomotion intent. IEEE Transact Neural Syst Rehabil Eng. 2020;28(3):646–57.
Lee UH, Bi J, Patel R, Fouhey D. Image Transformation and cnns: a strategy for encoding human locomotor intent for autonomous wearable robots. IEEE Robot Automation Lett. 2020;5(4):5440–7.
Moon J, Jung J, Kang E, Choi SI. Open set user identification using gait pattern analysis based on ensemble deep neural network. IEEE Senors J. 2022;22(17):16975–84.
Hu B, Rouse E. Benchmark datasets for bilateral lower-limb neuromechanical signals from wearable sensors during unassisted locomotion in able-bodied individuals. Front Robot AI. 2018;5(14):1–5.
Pan T, Tsai WL, Chang CY, Yeh CW. A hierarchical hand gesture recognition framework for sports referee training-based EMG and accelerometer sensors. IEEE Transact Cybern. 2022;52(5):3172–83.
He H, Fan Z, Levi JH, Zhi D, Daniel RR, Kevin BE. Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular-Mechanical Fusion. IEEE Transact Biomed Eng. 2011;58(10):2867–75.
Comments (0)