A multimodal framework based on deep belief network for human locomotion intent prediction

Sun W, Lin JW, Su SF, Wang N, Er MJ. Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Transact Cybernetics. 2021;51(3):1099–109.

Article  Google Scholar 

Li Z, Zhao K, Zhang L, Wu X, Su CY. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking. IEEE/ASME Trans Mechatron. 2021;26(5):2700–11.

Article  Google Scholar 

Ma Y, Wu XY, Yang SX, Dang C. Online gait planning of lower-limb exoskeleton robot for paraplegic rehabilitation considering weight transfer process. IEEE Trans Autom Sci Eng. 2021;18(2):414–25.

Article  Google Scholar 

Anderson AJ, Hudak YF, Muir BC, Aubin PM. Design, control, and evaluation of a robotic ankle-foot prosthesis emulator. IEEE Transact Med Robot Bionics. 2023;5(3):741–52.

Article  Google Scholar 

Zheng E, Wang Q, Qiao H. Locomotion mode recognition with robotic transtibial prosthesis in inter-session and inter-day applications. IEEE Transact Neural Syst Rehabilitation Eng. 2019;27(9):1836–45.

Article  Google Scholar 

Li XL, Hao YF, Zhang JH, Wang C, Li D, Zhang JJ. Design, modeling and experiments of a variable stiffness soft robotic glove for stroke patients with clenched fist deformity. IEEE Robot Autom Lett. 2023;8(7):4044–51.

Article  Google Scholar 

Gao Y, Jia B, Houston M, Zhang Y. Hybrid EEG-fNIRS brain computer interface based on common spatial pattern by using EEG-informed general linear model. IEEE Trans Instrum Meas. 2023;72:1–10.

Google Scholar 

Huang C, Xiao Y, Xu G. Predicting human intention-behavior through EEG signal analysis using multi-scale CNN. IEEE/ACM Trans Comput Biol Bioinf. 2021;18(5):1722–9.

Article  Google Scholar 

Elsayed NE, Tolba AS, Rashad MZ, Belal T, Sarhan S. A deep learning approach for brain computer interaction-motor execution EEG signal classification. IEEE Access. 2021;9:101513–29.

Article  Google Scholar 

Park S, Lee D, Chung WK, Kim K. Hierarchical motion segmentation through sEMG for continuous lower limb motions. IEEE Robot Autom Lett. 2019;4(4):4402–9.

Article  Google Scholar 

Ryu J, Kim DH. Real-time gait subphase detection using an EMG signal graph matching (ESGM) algorithm based on EMG signals. Expert Syst Appl. 2017;85:357–65.

Article  Google Scholar 

Gautam A, Panwar M, Biswas D, Acharyya A. MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG. IEEE J Transl Eng Health Med. 2020;8:1–10.

Article  Google Scholar 

Shi X, Qin P, Zhu J, Zhai M, Shi W. Feature extraction and classification of lower limb motion based on sEMG signals. IEEE Access. 2020;8:132882–92.

Article  Google Scholar 

Kang I, Molinaro DD, Choi G, Camargo J, Young AJ. Subject-independent continuous locomotion mode classification for robotic hip exoskeleton applications. IEEE Trans Biomed Eng. 2022;69(10):3234–42.

Article  Google Scholar 

Su BY, Wang J, Liu SQ, Sheng M, Xiang K. An improved motion intent recognition method for intelligent lower limb prosthesis driven by inertial motion capture data. Acta Autom Sin. 2018;46(7):1517–30.

Google Scholar 

Su BY, Wang J, Liu SQ. A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):1032–42.

Article  Google Scholar 

Narayan A, Reyes FA, Ren M, Haoyong Y. Real-time hierarchical classification of time series data for locomotion mode detection. IEEE J Biomed Health Inform. 2022;26(4):1749–60.

Article  Google Scholar 

Papapicco V, Chen B. A classification approach based on directed acyclic graph to predict locomotion activities with one inertial sensor on the thigh. IEEE Transact Med Robot Bionics. 2021;3(2):436–45.

Article  Google Scholar 

Attal F, Amirat Y, Chibani A, Mohammed S. Automatic recognition of gait phases using a multiple-regression hidden markov model. IEEE/ASME Trans Mechatron. 2018;23(4):1597–607.

Google Scholar 

Huang L, Zheng J, Hu H. A gait phase detection method in complex environment based on DTW-mean templates. IEEE Senors J. 2021;21(13):15114–23.

Article  Google Scholar 

Hu H, Zheng JB, Zhan E, Yu L. Curve similarity model for real-time gait phase detection based on ground contact forces. Sensors. 2019;19:3235.

Article  Google Scholar 

Cui C, Bian G, Hou Z, Zhao J. A multimodal framework based on integration of cortical and muscular activities for decoding human intentions about lower limb motions. IEEE Trans Biomed Circuits Syst. 2017;11(4):889–99.

Article  Google Scholar 

Tucker MR. Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil. 2015;12(1):1–29.

Article  Google Scholar 

Godiyal AK, Mondal M, Joshi SD. Force myography based novel strategy for locomotion classification. IEEE Transact Human-Machine Syst. 2018;48(6):648–57.

Article  Google Scholar 

Al-Quraishi MS, Elamvazuthi I, Tang TB. Multimodal fusion approach based on EEG and EMG signals for lower limb movement recognition. IEEE Senors Journal. 2021;21(24):27640–50.

Article  Google Scholar 

Wang Y, Cheng X, Jabban L, Sui X. Motion intention prediction and joint trajectories generation toward lower limb prostheses using EMG and IMU signals. IEEE Senors J. 2022;22(11):10719–29.

Article  Google Scholar 

Camargo J, Flanagan W, Csomay-Shanklin N, Kanwar B, Young A. A machine learning strategy for locomotion classification and parameter estimation using fusion of wearable sensors. IEEE Trans Biomed Eng. 2021;68(5):1569–78.

Article  Google Scholar 

Cui C, Bian GB, Hou ZG, Zhao J, Su GD, Zhou H, Peng L, Wang WQ. Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Transact Neural Syst Rehabil Eng. 2018;26(4):856–64.

Article  Google Scholar 

Zhao Y, Wang J, Zhang Y, Liu H. Flexible and wearable EMG and PSD sensors enabled locomotion mode recognition for IoHT-based in-home rehabilitation. IEEE Senors J. 2021;21(23):26311–9.

Article  Google Scholar 

Sun Y, Lo B. An artificial neural network framework for gait-based biometrics. IEEE J Biomed Health Inform. 2019;23(3):987–98.

Article  Google Scholar 

Zhang K, Wang J, De Silva CW, Fu CL. Unsupervised cross-subject adaptation for predicting human locomotion intent. IEEE Transact Neural Syst Rehabil Eng. 2020;28(3):646–57.

Article  Google Scholar 

Lee UH, Bi J, Patel R, Fouhey D. Image Transformation and cnns: a strategy for encoding human locomotor intent for autonomous wearable robots. IEEE Robot Automation Lett. 2020;5(4):5440–7.

Article  Google Scholar 

Moon J, Jung J, Kang E, Choi SI. Open set user identification using gait pattern analysis based on ensemble deep neural network. IEEE Senors J. 2022;22(17):16975–84.

Article  Google Scholar 

Hu B, Rouse E. Benchmark datasets for bilateral lower-limb neuromechanical signals from wearable sensors during unassisted locomotion in able-bodied individuals. Front Robot AI. 2018;5(14):1–5.

Google Scholar 

Pan T, Tsai WL, Chang CY, Yeh CW. A hierarchical hand gesture recognition framework for sports referee training-based EMG and accelerometer sensors. IEEE Transact Cybern. 2022;52(5):3172–83.

Article  Google Scholar 

He H, Fan Z, Levi JH, Zhi D, Daniel RR, Kevin BE. Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular-Mechanical Fusion. IEEE Transact Biomed Eng. 2011;58(10):2867–75.

Article  Google Scholar 

Comments (0)

No login
gif