Study of mechanical property and biocompatibility of graphene oxide/MEO2MA hydrogel scaffold for wound healing application

Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015. https://doi.org/10.1016/j.jare.2013.07.006.

Article  Google Scholar 

Wang Y. Programmable hydrogels. Biomaterials. 2018. https://doi.org/10.1016/j.biomaterials.2018.03.008.

Article  Google Scholar 

Song B, Liang H, Sun R, Peng P, Jiang Y, She D. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2019.12.082.

Article  Google Scholar 

Chen Y, Etxabide A, Seyfoddin A, Ramezani M. Fabrication and characterization of poly (vinyl alcohol)/ chitosan scaffolds for tissue engineering applications. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.02.303.

Article  Google Scholar 

Shi W, et al. Improved cooling performance of hydrogel wound dressings via integrating thermal conductivity and heat storage capacity for burn therapy. Biomacromol. 2022. https://doi.org/10.1021/acs.biomac.1c01334.

Article  Google Scholar 

Razali NAM, Lin WC. Accelerating the excisional wound closure by using the patterned microstructural nanofibrous mats/gentamicin-loaded hydrogel composite scaffold. Mater Today Bio. 2022. https://doi.org/10.1016/j.mtbio.2022.100347.

Article  Google Scholar 

Maihemuti A, Zhang H, Lin X, Wang Y, Xu Z, Zhang D, Jiang Q. 3D-printed fish gelatin scaffolds for cartilage tissue engineering. Bioact Mater. 2023. https://doi.org/10.1016/j.bioactmat.2023.02.007.

Article  Google Scholar 

Pushpamalar J, Meganathan P, Tan HL, et al. Development of a polysaccharide-based hydrogel drug delivery system (DDS): an update. Gels. 2021. https://doi.org/10.3390/gels7040153.

Article  Google Scholar 

Chamkouri H, Chamkouri M. A review of hydrogels, their properties and applications in medicine. Am J Biomed Sci Res. 2021. https://doi.org/10.34297/ajbsr.2021.11.001682.

Article  Google Scholar 

París R, Quijada-Garrido I. Temperature-and pH-responsive behavior of poly(2-(2-methoxyethoxy) ethyl methacrylate-co-N, N-dimethylaminoethyl methacrylate) hydrogels. Eur Polym J. 2010. https://doi.org/10.1016/j.eurpolymj.2010.09.004.

Article  Google Scholar 

Mohd Razali NA, Lin WC. Textural and tensile properties of thermo-responsive poly(2-(2-methoxyethoxy) ethyl methacrylate) hydrogel. Mater Sci Technol. 2019. https://doi.org/10.1080/02670836.2019.1646961.

Article  Google Scholar 

Tang L, Yang Y, Bai T, Liu W. Robust MeO2MA/vinyl-4, 6-diamino-1, 3, 5-triazine copolymer hydrogels-mediated reverse gene transfection and thermo-induced cell detachment. Biomaterials. 2011. https://doi.org/10.1016/j.biomaterials.2010.11.019.

Article  Google Scholar 

Lapresta-Fernández A, Salinas-Castillo A, Capitán-Vallvey LF. Synthesis of a thermoresponsive crosslinked MEO2MA polymer coating on microclusters of iron oxide nanoparticles. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-83608-z.

Article  Google Scholar 

Palmieri V, Spirito MD, Papi M. Graphene-based scaffolds for tissue engineering and photothermal therapy. Nanomedicine. 2020. https://doi.org/10.2217/nnm-2020-0050.

Article  Google Scholar 

Xue W, et al. Preparation, properties, and application of graphene-based materials in tissue engineering scaffolds. Tissue Eng Part B Rev. 2022. https://doi.org/10.1089/ten.teb.2021.0127.

Article  Google Scholar 

Hamrahjoo M, Hadad S, Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Poly (poly [ethylene glycol] methyl ether methacrylate)/graphene oxide nanocomposite gel polymer electrolytes prepared controlled and conventional radical polymerizations for lithium-ion batteries. Int J Energy Res. 2022. https://doi.org/10.1002/er.7788.

Article  Google Scholar 

Cheng W, Chen Y, Teng L, Lu B, Ren L, Wang Y. Antimicrobial colloidal hydrogels assembled by graphene oxide and thermo-sensitive nanogels for cell encapsulation. J Colloid Interface Sci. 2018. https://doi.org/10.1016/j.jcis.2017.11.018.

Article  Google Scholar 

Anderson CR, Abecunas C, Warrener M, Laschewsky A, Wischerhoff E. Effects of methacrylate-based thermos-responsive polymer brush composition on fibroblast adhesion and morphology. Cell Mol Bioeng. 2017. https://doi.org/10.1007/s12195-016-0464-5.

Article  Google Scholar 

Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008. https://doi.org/10.1007/s12274-008-8021-8.

Article  Google Scholar 

Li Y, Huang L, Tai G, Yan F, Cai L, Xin C, Al Islam S. Graphene oxide-loaded magnetic nanoparticles within 3D hydrogel form high-performance scaffolds for bone regeneration and tumor treatment. Compos Part A Appl Sci Manuf. 2022. https://doi.org/10.1016/j.compositesa.2021.106672.

Article  Google Scholar 

Yi J, Choe G, Park J, Lee JY. Graphene oxide-incorporated hydrogels for biomedical applications. Polym J. 2020;52(8):823–37. https://doi.org/10.1038/s41428-020-0350-9.

Article  Google Scholar 

Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011. https://doi.org/10.1007/s11671-010-9751-6.

Article  Google Scholar 

Tran TTT, Le HNT, Van Tran H, Tran LT, Vu THT. Tithonia diversifolia pectin–reduced graphene oxide and its cytotoxic activity. Mater Lett. 2016. https://doi.org/10.1016/j.matlet.2016.07.088.

Article  Google Scholar 

Yang X, Yang Q, Zheng G, Han S, Zhao F, Hu Q, Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environ Toxicol. 2019. https://doi.org/10.1002/tox.22695.

Article  Google Scholar 

Liu Y, Luo Y, Wu J, Wang Y, Yang X, Yang R, Zhang N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci Rep. 2013;3:3469.

Article  Google Scholar 

Feicht P, Eigler S. Defects in graphene oxide as structural motifs. ChemNanoMat. 2018. https://doi.org/10.1002/cnma.201700357.

Article  Google Scholar 

Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008. https://doi.org/10.1021/ja803688x.

Article  Google Scholar 

Turksen K. (Ed.). Wound healing: Stem cells repair and restorations, basic and clinical aspects. John Wiley & Sons; 2018.

Article  Google Scholar 

Gan D, et al. Mussel-inspired contact-active antibacterial hydrogel with high cell affinity, toughness, and recoverability. Advanced Functional Materials. 2019. https://doi.org/10.1002/adfm.201805964

Book  Google Scholar 

Ur Rehman SR, Augustine R, Zahid AA, Ahmed R, Hasan A. Graphene oxide-loaded hydrogel for enhanced wound healing in diabetic patients. In EMBC 2019 Committees, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019. p. 3943–3946. IEEE. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8857341.

Google Scholar 

Dragicevic N, Maibach HI. Percutaneous penetration enhancers drug penetration into/through the skin: methodology and general considerations. New York: Springer; 2017.

Chen S, et al. Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application. Macromol Biosci. 2020. https://doi.org/10.1002/mabi.201900385.

Article  Google Scholar 

Comments (0)

No login
gif