George MS, Aston-Jones G. Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology. 2010;35(1):301–16. https://doi.org/10.1038/npp.2009.87.
Hoy KE, Fitzgerald PB. Brain stimulation in psychiatry and its effects on cognition. Nat Rev Neurol. 2010;6(5):267–75. https://doi.org/10.1038/nrneurol.2010.30.
Jolesz FA, Hynynen K, McDannold N, Tempany C. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am. 2005;13(3):545–60. https://doi.org/10.1016/j.mric.2005.04.008.
White PJ, Clement GT, Hynynen K. Longitudinal and shear mode ultrasound propagation in human skull bone. Ultrasound Med Biol. 2006;32(7):1085–96. https://doi.org/10.1016/j.ultrasmedbio.2006.03.015.
Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, Frysinger RC, Sperling SA, Wylie S, Monteith SJ, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013;369(7):640–8. https://doi.org/10.1056/NEJMoa1300962.
Cammalleri A, Croce P, Lee W, Yoon K, Yoo S-S. Therapeutic potentials of localized blood-brain barrier disruption by noninvasive transcranial focused ultrasound: a technical review. J Clin Neurophysiol. 2020;37(2):104–17. https://doi.org/10.1097/WNP.0000000000000488.
Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS ONE. 2008;3(10):e3511. https://doi.org/10.1371/journal.pone.0003511.
Kim H, Chiu A, Lee SD, Fischer K, Yoo S-S. Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters. Brain Stimul. 2014;7(5):748–56. https://doi.org/10.1016/j.brs.2014.06.011.
Lee W, Croce P, Margolin RW, Cammalleri A, Yoon K, Yoo S-S. Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci. 2018;19:57. https://doi.org/10.1186/s12868-018-0459-3.
Jo Y, Lee S-M, Jung T, Park G, Lee C, Im GH, Lee S, Park JS, Oh C, Kook G, et al. General-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents. Adv Sci (Weinh). 2022;9(34):e2202345. https://doi.org/10.1002/advs.202202345.
Kim H, Kim S, Sim NS, Pasquinelli C, Thielscher A, Lee JH, Lee HJ. Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals. Brain Stimul. 2019;12(2):251–5. https://doi.org/10.1016/j.brs.2018.11.007.
Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, Fischer K, Maeng L-S, Yoo S-S. Image-guided focused ultrasound-mediated regional brain stimulation in sheep. Ultrasound Med Biol. 2016c;42(2):459–70. https://doi.org/10.1016/j.ultrasmedbio.2015.10.001.
Gaur P, Casey KM, Kubanek J, Li N, Mohammadjavadi M, Saenz Y, Glover GH, Bouley DM, Pauly KB. Histologic safety of transcranial focused ultrasound neuromodulation and magnetic resonance acoustic radiation force imaging in rhesus macaques and sheep. Brain Stimul. 2020;13(3):804–14. https://doi.org/10.1016/j.brs.2020.02.017.
Kubanek J, Brown J, Ye P, Pauly KB, Moore T, Newsome W. Remote, brain region-specific control of choice behavior with ultrasonic waves. Sci Adv. 2020;6(21):eaaz4193. https://doi.org/10.1126/sciadv.aaz4193.
Darmani G, Bergmann TO, Butts Pauly K, Caskey CF, de Lecea L, Fomenko A, Fouragnan E, Legon W, Murphy KR, Nandi T, et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol. 2022;135:51–73. https://doi.org/10.1016/j.clinph.2021.12.010.
Beisteiner R, Matt E, Fan C, Baldysiak H, Schönfeld M, Philippi Novak T, Amini A, Aslan T, Reinecke R, Lehrner J, et al. Transcranial pulse stimulation with ultrasound in Alzheimer’s disease—A new navigated focal brain therapy. Adv Sci (Weinh). 2020;7(3):1902583. https://doi.org/10.1002/advs.201902583.
Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med Biol. 2019;45(7):1509–36. https://doi.org/10.1016/j.ultrasmedbio.2018.12.015.
Aubry J-F, Attali D, Schafer M, Fouragnan E, Caskey C, Chen R, et al. ITRUSST consensus on biophysical safety for transcranial ultrasonic stimulation. arXiv. 2023;arXiv:2311.05359v1 [physics.bio-ph]. https://doi.org/10.48550/arXiv.2311.05359.
Fomenko A, Chen K-HS, Nankoo J-F, Saravanamuttu J, Wang Y, El-Baba M, Xia X, Seerala SS, Hynynen K, Lozano AM, Chen R. Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior. eLife. 2020;9:e54497. https://doi.org/10.7554/eLife.54497.
Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep. 2018b;8(1):10007. https://doi.org/10.1038/s41598-018-28320-1.
Xia X, Fomenko A, Nankoo J-F, Zeng K, Wang Y, Zhang J, Lozano AM, Chen R. Time course of the effects of low-intensity transcranial ultrasound on the excitability of ipsilateral and contralateral human primary motor cortex. NeuroImage. 2021;243:118557. https://doi.org/10.1016/j.neuroimage.2021.118557.
Nakajima K, Osada T, Ogawa A, Tanaka M, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep. 2022;40(7):111197. https://doi.org/10.1016/j.celrep.2022.111197.
Gibson BC, Sanguinetti JL, Badran BW, Yu AB, Klein EP, Abbott CC, Hansberger JT, Clark VP. Increased excitability induced in the primary motor cortex by transcranial ultrasound stimulation. Front Neurol. 2018;9:1007. https://doi.org/10.3389/fneur.2018.01007.
Zhang Y, Ren L, Liu K, Tong S, Yuan T-F, Sun J. Transcranial ultrasound stimulation of the human motor cortex. iScience. 2021;24(12):103429. https://doi.org/10.1016/j.isci.2021.103429.
Ren L, Zhai Z, Xiang Q, Zhuo K, Zhang S, Zhang Y, Jiao X, Tong S, Liu D, Sun J. Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex. J Neural Eng. 2023;20(1):016043. https://doi.org/10.1088/1741-2552/acb50d.
Zeng K, Darmani G, Fomenko A, Xia X, Tran S, Nankoo J-F, Shamli Oghli Y, Wang Y, Lozano AM, Chen R. Induction of human motor cortex plasticity by theta burst transcranial ultrasound stimulation. Ann Neurol. 2022;91(2):238–52. https://doi.org/10.1002/ana.26294.
Samuel N, Zeng K, Harmsen IE, Ding MYR, Darmani G, Sarica C, Santyr B, Vetkas A, Pancholi A, Fomenko A, et al. Multi-modal investigation of transcranial ultrasound-induced neuroplasticity of the human motor cortex. Brain Stimul. 2022;15(6):1337–47. https://doi.org/10.1016/j.brs.2022.10.001.
Zhang M-F, Chen W-Z, Huang F-B, Peng Z-Y, Quan Y-C, Tang Z-M. Low-intensity transcranial ultrasound stimulation facilitates hand motor function and cortical excitability: a crossover, randomized, double blind study. Front Neurol. 2022;13:926027. https://doi.org/10.3389/fneur.2022.926027.
Zhang T, Guo B, Zuo Z, Long X, Hu S, Li S, Su X, Wang Y, Liu C. Excitatory-inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neurosci Ther. 2023;29(12):3829–41. https://doi.org/10.1111/cns.14303.
Heimbuch IS, Fan TK, Wu AD, Faas GC, Charles AC, Iacoboni M. Ultrasound stimulation of the motor cortex during tonic muscle contraction. PLoS ONE. 2022;17(4):e0267268. https://doi.org/10.1371/journal.pone.0267268.
Ai L, Bansal P, Mueller JK, Legon W. Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study. BMC Neurosci. 2018;19(1):56. https://doi.org/10.1186/s12868-018-0456-6.
Yu K, Liu C, Niu X, He B. Transcranial focused ultrasound neuromodulation of voluntary movement-related cortical activity in humans. IEEE Trans Biomed Eng. 2021;68(6):1923–31. https://doi.org/10.1109/TBME.2020.3030892.
Shamli Oghli Y, Grippe T, Arora T, Hoque T, Darmani G, Chen R. Mechanisms of theta burst transcranial ultrasound induced plasticity in the human motor cortex. Brain Stimul. 2023;16(4):1135–43. https://doi.org/10.1016/j.brs.2023.07.056.
Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9. https://doi.org/10.1038/nn.3620.
Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 2014;7(6):900–8. https://doi.org/10.1016/j.brs.2014.08.008.
Lee W, Kim H, Jung Y, Song I-U, Chung YA, Yoo S-S. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep. 2015;5:8743. https://doi.org/10.1038/srep08743.
Lee W, Chung YA, Jung Y, Song I-U, Yoo S-S. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016a;17:68. https://doi.org/10.1186/s12868-016-0303-6.
Lee W, Kim S, Kim B, Lee C, Chung YA, Kim L, Yoo S-S. Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface. PLoS ONE. 2017;12(6):e0178476. https://doi.org/10.1371/journal.pone.0178476.
Liu C, Yu K, Niu X, He B. Transcranial focused ultrasound enhances sensory discrimination capability through somatosensory cortical excitation. Ultrasound Med Biol. 2021;47(5):1356–66. https://doi.org/10.1016/j.ultrasmedbio.2021.01.025.
Kim H-C, Lee W, Weisholtz DS, Yoo S-S. Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human. PLoS ONE. 2023;18(7):e0288654. https://doi.org/10.1371/journal.pone.0288654.
Lee W, Kim H-C, Jung Y, Chung YA, Song I-U, Lee J-H, Yoo S-S. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016b;6:34026. https://doi.org/10.1038/srep34026.
Schimek N, Burke-Conte Z, Abernethy J, Schimek M, Burke-Conte C, Bobola M, Stocco A, Mourad PD. Repeated application of transcranial diagnostic ultrasound towards the visual cortex induced illusory visual percepts in healthy participants. Front Hum Neurosci. 2020;14:66. https://doi.org/10.3389/fnhum.2020.00066.
Comments (0)