Hosoi AE, Goldman DI. Beneath our feet: strategies for locomotion in granular media. Annu Rev Fluid Mech. 2015;47(1):431–53. https://doi.org/10.1146/annurev-fluid-010313-141324.
Vincent JFV. How does the female locust dig her oviposition hole? J Entomol Ser Gen Entomol. 1976;50(3):175–81.
Hanlon RT, Watson AC, Barbosa A. A “mimic octopus” in the Atlantic: flatfish mimicry and camouflage by Macrotritopus defilippi. Biol Bull. 2010;218(1):15–24. https://doi.org/10.1086/BBLv218n1p15.
Brett RA. 5. The ecology of naked mole-rat colonies: burrowing, food, and limiting factors. In 5. The Ecology of Naked Mole-Rat Colonies: Burrowing, Food, and Limiting Factors; Princeton University Press, 2017; pp 137–184. https://doi.org/10.1515/9781400887132-008.
Bennet-Clark HC. The tuned singing burrow of mole crickets. J Exp Biol. 1987;128(1):383–409. https://doi.org/10.1242/jeb.128.1.383.
Pough FH. The burrowing ecology of the sand lizard. Uma notata Copeia. 1970;1970:145. https://doi.org/10.2307/1441982.
McColloch JW, Hayes WmP. The reciprocal relation of soil and insects. Ecology. 1922;3(4):288–301. https://doi.org/10.2307/1929431.
Chen P-Y, McKittrick J, Meyers MA. Biological materials: functional adaptations and bioinspired designs. Prog Mater Sci. 2012;57(8):1492–704. https://doi.org/10.1016/j.pmatsci.2012.03.001.
Thompson KJ, Jones AD, Miller SA. On the origin of grasshopper oviposition behavior: structural homology in pregenital and genital motor systems. Brain Behav Evol. 2014;83(4):247–65. https://doi.org/10.1159/000360932.
Qadri Ma H. On the development of the genitalia and their ducts of orthopteroid insects. Trans Ent Soc Lond. 1940, 90 (6), 121–175.
Schumann H, Matsuda R. Morphology and evolution of the insect abdomen with special reference to developmental patterns and their bearings upon systematics. Intern Ser Pure Appl Biol. 1978;54:392–3. https://doi.org/10.1002/mmnz.19780540213.
Das R, Ayali A, Guershon M, Ibraheem A, Perlson E, Pinchasik B-E. The biomechanics of ultra-stretchable nerves iScience. 2022;25(11): 105295. https://doi.org/10.1016/j.isci.2022.105295.
Article CAS PubMed Google Scholar
Thompson KJ. Oviposition digging in the grasshopper. II. Descending neural control. J Exp Biol. 1986;122:413–25. https://doi.org/10.1242/jeb.122.1.413.
Article CAS PubMed Google Scholar
Das R, Gershon S, Bar-On B, Tadayon M, Ayali A, Pinchasik B-E. The biomechanics of the locust ovipositor valves: a unique digging apparatus. J R Soc Interf. 2022;19:20210955. https://doi.org/10.1098/rsif.2021.0955.
Rose U, Seebohm G, Hustert R. The role of internal pressure and muscle activation during locust oviposition. J Insect Physiol. 2000;46(1):69–80. https://doi.org/10.1016/S0022-1910(99)00103-1.
Article CAS PubMed Google Scholar
Menon C, Vincent JFV, Lan N, Bilhaut L, Ellery A, Gao Y, Zangani D, Carosio S, Manning C, Jaddou M, Eckersley S. Bio-inspired micro-drills for future planetary exploration. In CANEUS2006: MNT for Aerospace Applications; ASMEDC: Toulouse, France, 2006; 117–128. https://doi.org/10.1115/CANEUS2006-11022.
Raimondo De Laurentis; Donato Zangani. ACT-RPT-BIO-GSP-04L27b-H9-Bionics and space system design - a deployable digging mechanism for sampling below planetary surfaces 2005.
Bar-On B, Barth FG, Fratzl P, Politi Y. Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nat Commun. 2014;5(1):3894. https://doi.org/10.1038/ncomms4894.
Article CAS PubMed Google Scholar
Tadayon M, Younes-Metzler O, Shelef Y, Zaslansky P, Rechels A, Berner A, Zolotoyabko E, Barth FG, Fratzl P, Bar-On B, Politi Y. Adaptations for wear resistance and damage resilience: micromechanics of spider cuticular “tools.” Adv Funct Mater. 2020;30(32):2000400. https://doi.org/10.1002/adfm.202000400.
Hörnschemeyer T, Bond J, Young PG. Analysis of the functional morphology of mouthparts of the Beetle Priacma Serrata, and a discussion of possible food sources. J Insect Sci. 2013;13(126):1–14. https://doi.org/10.1673/031.013.12601.
Das R, Yadav RN, Sihota P, Uniyal P, Kumar N, Bhushan B. Biomechanical evaluation of wasp and honeybee stingers. Sci Rep. 2018;8(1):14945. https://doi.org/10.1038/s41598-018-33386-y.
Article CAS PubMed PubMed Central Google Scholar
Kundanati L, Gundiah N. Biomechanics of substrate boring by fig wasps. J Exp Biol. 2014;217(11):1946–54. https://doi.org/10.1242/jeb.098228.
Bar-On B. On the form and bio-mechanics of venom-injection elements. Acta Biomater. 2019;85:263–71. https://doi.org/10.1016/j.actbio.2018.12.030.
Anderson PSL. Making a point: shared mechanics underlying the diversity of biological puncture. J Exp Biol. 2018;221(22):jeb187294. https://doi.org/10.1242/jeb.187294.
Bar-On B. The effect of structural curvature on the load-bearing characteristics of biomechanical elements. J Mech Behav Biomed Mater. 2023;138: 105569. https://doi.org/10.1016/j.jmbbm.2022.105569.
Calderón AA, Ugalde JC, Chang L, Zagal JC, Pérez-Arancibia NO. An earthworm-inspired soft robot with perceptive artificial skin*. Bioinspir Biomim. 2019;14(5): 056012. https://doi.org/10.1088/1748-3190/ab1440.
Russell RA. CRABOT: a biomimetic burrowing robot designed for underground chemical source location. Adv Robot. 2011;25(1–2):119–34. https://doi.org/10.1163/016918610X538516.
Winter AGV, Deits RLH, Dorsch DS, Slocum AH, Hosoi AE. Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. Bioinspir Biomim. 2014;9(3):036009. https://doi.org/10.1088/1748-3182/9/3/036009.
Article CAS PubMed Google Scholar
Li D, Huang S, Tang Y, Marvi H, Tao J, Aukes DM. Compliant fins for locomotion in granular media. IEEE Robot Autom Lett. 2021;6(3):5984–91. https://doi.org/10.1109/LRA.2021.3084877.
Naclerio ND, Karsai A, Murray-Cooper M, Ozkan-Aydin Y, Aydin E, Goldman DI, Hawkes EW. Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci Robot. 2021;6(55):eabe2922. https://doi.org/10.1126/scirobotics.abe2922.
Kobo D, Pinchasik B-E. Backswimmer-inspired miniature 3D-printed robot with buoyancy autoregulation through controlled nucleation and release of microbubbles. Adv Intell Syst. 2022;4(6):2200010. https://doi.org/10.1002/aisy.202200010.
Filc O, Gilon H, Gershon S, Ribak G, Pinchasik B. Tailoring the mechanical properties of high-fidelity, beetle-inspired, 3D-printed wings improves their aerodynamic performance. Adv Eng Mater. 2023;25:2300861. https://doi.org/10.1002/adem.202300861.
Goriely, A. The mathematics and mechanics of biological growth; Interdisciplinary Applied Mathematics; Springer New York: New York, 2017; Vol. 45. https://doi.org/10.1007/978-0-387-87710-5.
Raup DM, Michelson A. Theoretical morphology of the coiled shell. Science (American Association for the Advancement of Science). 1965;147(3663):1294–5.
Illert, C. Formulation and Solution of the Classical Seashell Problem. 21.
Cortie MB. Digital seashells. Comput Graph. 1993;17(1):79–84. https://doi.org/10.1016/0097-8493(93)90054-D.
Harary G, Tal A. The natural 3D spiral. Comput Graph Forum. 2011;30(2):237–46. https://doi.org/10.1111/j.1467-8659.2011.01855.x.
Evans AR, Pollock TI, Cleuren SGC, Parker WMG, Richards HL, Garland KLS, Fitzgerald EMG, Wilson TE, Hocking DP, Adams JW. A universal power law for modelling the growth and form of teeth, claws, horns, thorns, beaks, and shells. BMC Biol. 2021;19(1):58. https://doi.org/10.1186/s12915-021-00990-w.
Article PubMed PubMed Central Google Scholar
Faghih Shojaei M, Mohammadi V, Rajabi H, Darvizeh A. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume. J Mech Behav Biomed Mater. 2012;16:38–54. https://doi.org/10.1016/j.jmbbm.2012.08.006.
Comments (0)