Lafri I, Hachid A, Bitam I. West Nile virus in Algeria: a comprehensive overview. New Microbes New Infect. 2018;27:9–13. https://doi.org/10.1016/j.nmni.2018.10.002.
Article PubMed PubMed Central Google Scholar
Suthar MS, Diamond MS, Gale M Jr. West Nile virus infection and immunity. Nat Rev Microbiol. 2013;11(2):115–28. https://doi.org/10.1038/nrmicro2950.
Article CAS PubMed Google Scholar
Byas AD, Ebel GD. Comparative pathology of West Nile virus in humans and non-human animals. Pathogens. 2020;9(1):48. https://doi.org/10.3390/pathogens9010048.
Article CAS PubMed PubMed Central Google Scholar
Rajaiah P, Mayilsamy M, Kumar A. West Nile virus in India: an update on its genetic lineages. J Vector Borne Dis. 2023;60(3):225–37. https://doi.org/10.4103/0972-9062.374039.
Article CAS PubMed Google Scholar
Quicke KM, Suthar MS. The innate immune playbook for restricting West Nile virus infection. Viruses. 2013;5(11):2643–58. https://doi.org/10.3390/v5112643.
Article CAS PubMed PubMed Central Google Scholar
Fulton CDM, Beasley DWC, Bente DA, Dineley KT. Long-term, West Nile virus-induced neurological changes: a comparison of patients and rodent models. Brain Behav Immun Health. 2020;7:100105. https://doi.org/10.1016/j.bbih.2020.100105.
Article PubMed PubMed Central Google Scholar
Daffis S, Suthar MS, Gale M Jr, Diamond MS. Measure and countermeasure: type I IFN (IFN-alpha/beta) antiviral response against West Nile virus. J Innate Immun. 2009;1(5):435–45. https://doi.org/10.1159/000226248.
Article CAS PubMed PubMed Central Google Scholar
Zidovec-Lepej S, Vilibic-Cavlek T, Barbic L, Ilic M, Savic V, Tabain I, et al. Antiviral cytokine response in neuroinvasive and non-neuroinvasive West Nile virus infection. Viruses. 2021;13(2):342. https://doi.org/10.3390/v13020342.
Article CAS PubMed PubMed Central Google Scholar
Schittenhelm L, Hilkens CM, Morrison VL. β2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Front Immunol. 2017;8:1866. https://doi.org/10.3389/fimmu.2017.01866.
Article CAS PubMed PubMed Central Google Scholar
Khan SQ, Khan I, Gupta V. CD11b activity modulates pathogenesis of lupus nephritis. Front Med (Lausanne). 2018;5:52. https://doi.org/10.3389/fmed.2018.00052.
Fagerholm SC, MacPherson M, James MJ, Sevier-Guy C, Lau CS. The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus. 2013;22(7):657–63. https://doi.org/10.1177/0961203313491851.
Article CAS PubMed Google Scholar
Rosetti F, Mayadas TN. The many faces of Mac-1 in autoimmune disease. Immunol Rev. 2016;269(1):175–93. https://doi.org/10.1111/imr.12373.
Article CAS PubMed Google Scholar
Caiado F, Carvalho T, Rosa I, Remédio L, Costa A, Matos J, et al. Bone marrow-derived CD11b + Jagged2 + cells promote epithelial-to-mesenchymal transition and metastasization in colorectal cancer. Cancer Res. 2013;73(14):4233–46. https://doi.org/10.1158/0008-5472.CAN-13-0085.
Article CAS PubMed Google Scholar
Lim SY, Gordon-Weeks A, Allen D, Kersemans V, Beech J, Smart S, et al. CD11b(+) myeloid cells support hepatic metastasis through down-regulation of angiopoietin-like 7 in cancer cells. Hepatology. 2015;62(2):521–33. https://doi.org/10.1002/hep.27838.
Article CAS PubMed Google Scholar
Hou L, Bao X, Zang C, Yang H, Sun F, Che Y, et al. Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a rho-dependent pathway. Redox Biol. 2018;14:600–8. https://doi.org/10.1016/j.redox.2017.11.010.
Article CAS PubMed Google Scholar
Stevanin M, Busso N, Chobaz V, Pigni M, Ghassem-Zadeh S, Zhang L, et al. CD11b regulates the Treg/Th17 balance in murine arthritis via IL-6. Eur J Immunol. 2017;47(4):637–45. https://doi.org/10.1002/eji.201646565.
Article CAS PubMed Google Scholar
Saed GM, Fletcher NM, Diamond MP, Morris RT, Gomez-Lopez N, Memaj I. Novel expression of CD11b in epithelial ovarian cancer: potential therapeutic target. Gynecol Oncol. 2018;148(3):567–75. https://doi.org/10.1016/j.ygyno.2017.12.018.
Article CAS PubMed Google Scholar
Plow EF, Wang Y, Simon DI. The search for new antithrombotic mechanisms and therapies that may spare hemostasis. Blood. 2018;131(17):1899–902. https://doi.org/10.1182/blood-2017-10-784074.
Article CAS PubMed PubMed Central Google Scholar
Tang WD, Tang HL, Peng HR, Ren RW, Zhao P, Zhao LJ. Inhibition of tick-borne encephalitis virus in cell cultures by Ribavirin. Front Microbiol. 2023;14:1182798. https://doi.org/10.3389/fmicb.2023.1182798.
Article PubMed PubMed Central Google Scholar
Li SH, Li XF, Zhao H, Jiang T, Deng YQ, Yu XD, et al. Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunol Lett. 2011;138(2):156–60. https://doi.org/10.1016/j.imlet.2011.04.003.
Article CAS PubMed Google Scholar
Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, et al. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation. 2021;18(1):11. https://doi.org/10.1186/s12974-020-02060-4.
Article CAS PubMed PubMed Central Google Scholar
Mundhra S, Bondre VP. Higher replication potential of West Nile virus governs apoptosis induction in human neuroblastoma cells. Apoptosis. 2023;28(7–8):1113–27. https://doi.org/10.1007/s10495-023-01844-2.
Article CAS PubMed Google Scholar
Tang WD, Zhu WY, Tang HL, Zhao P, Zhao LJ. Engagement of AKT and ERK signaling pathways facilitates infection of human neuronal cells with West Nile virus. J Virus Erad. 2024;10(1):100368. https://doi.org/10.1016/j.jve.2024.100368.
Article CAS PubMed PubMed Central Google Scholar
Srivastava R, Ramakrishna C, Cantin E. Anti-inflammatory activity of intravenous immunoglobulins protects against West Nile virus encephalitis. J Gen Virol. 2015;96(Pt 6):1347–57. https://doi.org/10.1099/vir.0.000079.
Article CAS PubMed PubMed Central Google Scholar
Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, et al. Ly6c+ inflammatory monocytes are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205(10):2319–37. https://doi.org/10.1084/jem.20080421.
Article CAS PubMed PubMed Central Google Scholar
Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, Defilippis V, et al. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol. 2007;81(20):10849–60. https://doi.org/10.1128/JVI.01151-07.
Comments (0)