Umanath, K., and J. B. Lewis. 2018. Update on Diabetic Nephropathy: Core Curriculum 2018. American Journal of Kidney Diseases 71:884–895.
Chen, C., Y. Zhao, and D. W. Wang. 2017. MiR-30C protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Journal of the American College of Cardiology 69:2037.
Kang, M. K., S. I. Kim, S. Y. Oh, W. Na, and Y. H. Kang. 2020. Tangeretin Ameliorates Glucose-Induced Podocyte Injury through Blocking Epithelial to Mesenchymal Transition Caused by Oxidative Stress and Hypoxia. International Journal of Molecular Sciences 21:1–17.
Dhaval, Dixit, Okuniewska Martyna, and Schwab Susan. 2019. Secrets and lyase: Control of sphingosine 1-phosphate distribution. Immunological Reviews 289:173.
Cartier, A., and T. Hla. 2019. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 366:eaar5551-.
Article CAS PubMed PubMed Central Google Scholar
Proia, R. L., and T. Hla. 2015. Emerging biology of sphingosine-1-phosphate: Its role in pathogenesis and therapy. Journal of Clinical Investigation 125:1379.
Article PubMed PubMed Central Google Scholar
Donati, C., F. Cencetti, C. Bernacchioni, V. Vannuzzi, and P. Bruni. 2021. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cellular Signalling 78:109861.
Article CAS PubMed Google Scholar
Yang, Z., F. Xiong, Y. Wang, W. Gong, J. Huang, C. Chen, et al. 2016. TGR5 activation suppressed S1P/S1P2 signaling and resisted high glucose-induced fibrosis in glomerular mesangial cells. Pharmacological Research 11:226–236.
Lin, Q., C. Long, Z. Wang, R. Wang, W. Shi, J. Qiu, et al. 2021. Hirudin, a thrombin inhibitor, attenuates TGF-β-induced fibrosis in renal proximal tubular epithelial cells by inhibition of protease-activated receptor 1 expression via S1P/S1PR2/S1PR3 signaling. Experimental and Therapeutic Medicine 23:1.
Awad, A. S., H. Ye, L. Huang, L. Li, and M. D. Okusa. 2006. Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. American Journal of Physiology 290:1516–1524.
Lien, Y. H. H., K. C. Yong, C. Cho, S. Igarashi, and L. W. Lai. 2006. S1P1-selective agonist, SEW2871, ameliorates ischemic acute renal failure - ScienceDirect. Kidney International 69:1601–1608.
Article CAS PubMed Google Scholar
Maceyka, M., S. G. Payne, S. Milstien, and S. Spiegel. 2002. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochimica et Biophysica Acta 1585:193–201.
Article CAS PubMed Google Scholar
Cuvillier, O., G. Pirianov, B. Kleuser, P. G. Vanek, and S. Spiegel. 1996. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803.
Article CAS PubMed Google Scholar
Cohen, J. A., F. Barkhof, G. Comi, H. P. Hartung, and L. Kappos. 2010. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. New England Journal of Medicine 362:402–415.
Article CAS PubMed Google Scholar
Kappos, L., E. W. Radue, P. O’Connor, C. Polman, R. Hohlfeld, P. Calabresi, et al. 2010. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. New England Journal of Medicine 362:387–401.
Article CAS PubMed Google Scholar
Kihara, Y., H. Mizuno, and J. Chun. 2015. Lysophospholipid receptors in drug discovery. Experimental Cell Research 333:171–177.
Article CAS PubMed Google Scholar
Santos-Gallego, C. G., T. P. Vahl, G. Goliasch, B. Picatoste, T. Arias, K. Ishikawa, et al. 2016. Sphingosine-1-Phosphate Receptor Agonist Fingolimod Increases Myocardial Salvage and Decreases Adverse Postinfarction Left Ventricular Remodeling in a Porcine Model of Ischemia/ReperfusionCLINICAL PERSPECTIVE. Circulation 133:954–966.
Article CAS PubMed Google Scholar
Hung, J. H., Y. S. Lu, Y. C. Wang, Y. H. Ma, and C. S. Chen. 2008. FTY720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase C delta signaling. Cancer Research 68:1204–1212.
Article CAS PubMed Google Scholar
Blaho, V. A., and T. Hla. 2014. An update on the biology of sphingosine 1-phosphate receptors. JLR Papers In Press 55:1596.
Meng, H., and V. M. Lee. 2009. Differential expression of sphingosine-1-phosphate receptors 1–5 in the developing nervous system. Ltd: John Wiley & Sons.
Shirong, Z., D. W. Powell, Z. Feng, K. Phillip, and G. Luigi. 2016. Diabetic Nephropathy: Proteinuria, Inflammation, and Fibrosis. Journal of Diabetes Research 2016:1–2.
Duran-Salgado M, Rubio-Guerra A. Diabetic nephropathy and inflammation. World Journal of Diabetes 2014;5:393.
Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences 20:3328.
Article CAS PubMed PubMed Central Google Scholar
Samra, Y. A., H. S. Said, N. M. Elsherbiny, G. I. Liou, M. M. El-Shishtawy, and L. A. Eissa. 2016. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: Role of NF-κB and NLRP3 inflammasome. Life Sciences 157:187–199.
Article CAS PubMed Google Scholar
Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11:136–140.
Article CAS PubMed Google Scholar
Hou, L., L. Yang, N. Chang, X. Zhao, and L. Li. 2020. Macrophage Sphingosine 1-Phosphate Receptor 2 Blockade Attenuates Liver Inflammation and Fibrogenesis Triggered by NLRP3 Inflammasome. Frontiers in Immunology 11:1149.
Article CAS PubMed PubMed Central Google Scholar
Flyvbjerg, A., F. Dagnæs-Hansen, A. S. De Vriese, B. F. Schrijvers, R. G. Tilton, and R. Rasch. 2002. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51 (10): 3090–3094.
Article CAS PubMed Google Scholar
Wu, M., Z. Yang, C. Zhang, Y. Shi, W. Han, S. Song, L. Mu, C. Du, and Y. Shi. 2021. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism 118:154748.
Article CAS PubMed Google Scholar
Cao, Y., Z. Yang, Y. Chen, S. Jiang, Z. Wu, B. Ding, et al. 2021. An Overview of the Posttranslational Modifications and Related Molecular Mechanisms in Diabetic Nephropathy. Frontiers in cell and developmental biology 9:630401.
Article PubMed PubMed Central Google Scholar
Han, J., X. Pang, X. Shi, Y. Zhang, Z. Peng, and Y. Xing. 2021. Ginkgo Biloba Extract EGB761 Ameliorates the Extracellular Matrix Accumulation and Mesenchymal Transformation of Renal Tubules in Diabetic Kidney Disease by Inhibiting Endoplasmic Reticulum Stress. Hindawi Limited 2021:1.
Balakumar, Pitchai, Ramanathan Sambathkumar, Nanjaian Mahadevan, et al. 2019. A potential role of the renin-angiotensin-aldosterone system in epithelial-to-mesenchymal transition-induced renal abnormalities: Mechanisms and therapeutic implications. Pharmacol Res 146:104314.
Article CAS PubMed Google Scholar
Imeri, F., B. S. Tanturovska, S. Schwalm, S. Saha, J. Zeng-Brouwers, H. Pavenstdt, et al. 2021. Loss of sphingosine kinase 2 enhances Wilm’s tumor suppressor gene 1 and nephrin expression in podocytes and protects from streptozotocin-induced podocytopathy and albuminuria in mice. Matrix Biology 98:32–48.
Article CAS PubMed Google Scholar
Drexler, Y., J. Molina, A. Mitrofanova, A. Fornoni, and S. Merscher. 2021. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. Journal of the American Society of Nephrology : JASN 32:9–31.
Article CAS PubMed Google Scholar
Weina, W., W. Aimei, L. Guochang, M. Fengqiao, W. Xiaoming, and B. Yongyi. 2018. S1P1 receptor inhibits kidney epithelial mesenchymal transition triggered by ischemia/reperfusion injury via the PI3K/Akt pathway. Acta Biochimica Et Biophysica Sinica 50:651.
Comments (0)