Dimethyloxallyl Glycine Preconditioning Promotes the Anti-inflammatory and Anti-fibrotic Effects of Human Umbilical Cord Mesenchymal Stem Cells on Kidney Damage in Systemic Lupus Erythematosus Related to TGF-β/Smad Signaling Pathway

Choi, M.Y., and K.H. Costenbader. 2022. Understanding the Concept of Pre-Clinical Autoimmunity: Prediction and Prevention of Systemic Lupus Erythematosus: Identifying Risk Factors and Developing Strategies Against Disease Development. Frontiers in Immunology 13: 890522. https://doi.org/10.3389/fimmu.2022.890522. (Published 2022 Jun 3).

Almaani, S., A. Meara, and B.H. Rovin. 2017. Update on Lupus Nephritis. Clinical Journal of the American Society of Nephrology 12 (5): 825–835. https://doi.org/10.2215/CJN.05780616.

Article  PubMed  Google Scholar 

Davidson, A. 2016. What is damaging the kidney in lupus nephritis? Nature Reviews Rheumatology 12 (3): 143–153. https://doi.org/10.1038/nrrheum.2015.159.

Article  CAS  PubMed  Google Scholar 

Bernatsky, S., J.F. Boivin, L. Joseph, et al. 2006. Mortality in systemic lupus erythematosus. Arthritis and Rheumatism 54 (8): 2550–2557. https://doi.org/10.1002/art.21955.

Article  CAS  PubMed  Google Scholar 

Weening, J.J., D'Agati, V.D., Schwartz, M.M., et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited [published correction appears in J Am Soc Nephrol. 2004 Mar;15(3):835–6]. J Am Soc Nephrol. 2004;15(2):241–250. https://doi.org/10.1097/01.asn.0000108969.21691.5d

3rd Austin, H.A., J.H. Klippel, J.E. Balow, et al. 1986. Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. The New England Journal of Medicine 314 (10): 614–619. https://doi.org/10.1056/NEJM198603063141004.

Article  PubMed  Google Scholar 

Yang, Q., Y. Liu, G. Chen, W. Zhang, S. Tang, and T. Zhou. 2021. An Overview of the Safety, Efficiency, and Signal Pathways of Stem Cell Therapy for Systemic Lupus Erythematosus. Stem Cells International 2021: 2168595. https://doi.org/10.1155/2021/2168595. (Published 2021 Aug 13).

Kaul, A., C. Gordon, M.K. Crow, et al. 2016. Systemic lupus erythematosus. Nature Reviews Disease Primers 2: 16039. https://doi.org/10.1038/nrdp.2016.39. (Published 2016 Jun 16).

De Becker, A., and I.V. Riet. 2016. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World Journal of Stem Cells 8 (3): 73–87. https://doi.org/10.4252/wjsc.v8.i3.73.

Article  PubMed  PubMed Central  Google Scholar 

Shaughnessy, P.J., D.W. Ririe, D.L. Ornstein, et al. 2001. Graft failure in a patient with systemic lupus erythematosus (SLE) treated with high-dose immunosuppression and autologous stem cell rescue. Bone Marrow Transplantation 27 (2): 221–224. https://doi.org/10.1038/sj.bmt.1702767.

Article  CAS  PubMed  Google Scholar 

Chang, J.W., S.P. Hung, H.H. Wu, et al. 2011. Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplantation 20 (2): 245–257. https://doi.org/10.3727/096368910X520056.

Article  PubMed  Google Scholar 

Lan, H.Y., and A.C. Chung. 2012. TGF-β/Smad signaling in kidney disease. Seminars in Nephrology 32 (3): 236–243. https://doi.org/10.1016/j.semnephrol.2012.04.002.

Article  CAS  PubMed  Google Scholar 

Wynn, T.A. 2008. Cellular and molecular mechanisms of fibrosis. The Journal of Pathology 214 (2): 199–210. https://doi.org/10.1002/path.2277.

Article  CAS  PubMed  Google Scholar 

Rosendahl, A.H., K. Schönborn, and T. Krieg. 2022. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung Journal of Medical Sciences 38 (3): 187–195. https://doi.org/10.1002/kjm2.12505.

Article  PubMed  Google Scholar 

Lan, H.Y. 2011. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. International Journal of Biological Sciences 7 (7): 1056–1067. https://doi.org/10.7150/ijbs.7.1056.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, B., T. Ge, L. Zhou, et al. 2020. Dimethyloxalyl Glycine Regulates the HIF-1 Signaling Pathway in Mesenchymal Stem Cells. Stem Cell Reviews and Reports 16 (4): 702–710. https://doi.org/10.1007/s12015-019-09947-7.

Article  CAS  PubMed  Google Scholar 

Chen, M.H., Y.H. Wang, B.J. Sun, et al. 2021. HIF-1α activator DMOG inhibits alveolar bone resorption in murine periodontitis by regulating macrophage polarization. International Immunopharmacology 99: 107901. https://doi.org/10.1016/j.intimp.2021.107901.

Article  CAS  PubMed  Google Scholar 

Sackstein, R. 2005. The lymphocyte homing receptors: Gatekeepers of the multistep paradigm. Current Opinion in Hematology 12 (6): 444–450. https://doi.org/10.1097/01.moh.0000177827.78280.79.

Article  PubMed  Google Scholar 

Zhang, L., C. Ye, P. Li, et al. 2022. ADSCs stimulated by VEGF-C alleviate intestinal inflammation via dual mechanisms of enhancing lymphatic drainage by a VEGF-C/VEGFR-3-dependent mechanism and inhibiting the NF-κB pathway by the secretome. Stem Cell Research & Therapy 13 (1): 448. https://doi.org/10.1186/s13287-022-03132-3. (Published 2022 Sep 5).

Viswanathan, S., K.L. Blanc, R. Ciccocioppo, et al. 2023. An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue-derived MSCs for research purposes. Cytotherapy 25 (8): 803–807. https://doi.org/10.1016/j.jcyt.2023.04.005.

Article  CAS  PubMed  Google Scholar 

Aggarwal, S., and M.F. Pittenger. 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105 (4): 1815–1822. https://doi.org/10.1182/blood-2004-04-1559.

Article  CAS  PubMed  Google Scholar 

Chen, X.C., D. Wu, H.L. Wu, et al. 2022. Metformin improves renal injury of MRL/lpr lupus-prone mice via the AMPK/STAT3 pathway. Lupus Sci Med. 9 (1): e000611. https://doi.org/10.1136/lupus-2021-000611.

Article  PubMed  PubMed Central  Google Scholar 

Li, D., G. Shi, J. Wang, et al. 2019. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Research & Therapy 21 (1): 105. https://doi.org/10.1186/s13075-019-1876-0. (Published 2019 Apr 25).

Tian, J., T. Huang, J. Chen, et al. 2023. SIRT1 slows the progression of lupus nephritis by regulating the NLRP3 inflammasome through ROS/TRPM2/Ca2+ channel. Clinical and Experimental Medicine 23 (7): 3465–3478. https://doi.org/10.1007/s10238-023-01093-2.

Article  CAS  PubMed  Google Scholar 

Liu, L., Y. Zhang, and L. Zhong. 2023. LncRNA TUG1 relieves renal mesangial cell injury by modulating the miR-153-3p/Bcl-2 axis in lupus nephritis. Immunity, Inflammation and Disease 11 (4): e811. https://doi.org/10.1002/iid3.811.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, J.W., M.Y. Wang, Y. Mao, et al. 2024. Inhibition of STAT3 alleviates LPS-induced apoptosis and inflammation in renal tubular epithelial cells by transcriptionally down-regulating TASL. European Journal of Medical Research 29 (1): 34. https://doi.org/10.1186/s40001-023-01610-9. (Published 2024 Jan 6).

Xu, Z.Q., Y. Ding, X.Y. Huang, W. Xiang, and X.J. He. 2021. CircELK4 Contributes to Lupus Nephritis by Acting as a miR-27b-3p Sponge to Regulate STING/IRF3/IFN-I Signaling. Inflammation 44 (5): 2106–2119. https://doi.org/10.1007/s10753-021-01487-y.

Article  CAS  PubMed  Google Scholar 

Jantunen, E., and R. Myllykangas-Luosujärvi. 2000. Stem cell transplantation for treatment of severe autoimmune diseases: Current status and future perspectives. Bone Marrow Transplantation 25 (4): 351–356. https://doi.org/10.1038/sj.bmt.1702152.

Article  CAS  PubMed  Google Scholar 

Yu, C., P. Li, X. Dang, X. Zhang, Y. Mao, and X. Chen. 2022. Lupus nephritis: New progress in diagnosis and treatment. Journal of Autoimmunity 132: 102871. https://doi.org/10.1016/j.jaut.2022.102871.

Article  PubMed  Google Scholar 

Gasparotto, M., M. Gatto, V. Binda, A. Doria, and G. Moroni. 2020. Lupus nephritis: Clinical presentations and outcomes in the 21st century. Rheumatology (Oxford) 59 (Suppl5): v39–v51. https://doi.org/10.1093/rheumatology/keaa381.

Article  CAS  PubMed  Google Scholar 

Yu, H., Y. Nagafuchi, and K. Fujio. 2021. Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus. Biomolecules. 11 (7): 928. https://doi.org/10.3390/biom11070928. (Published 2021 Jun 22).

Moroni, G., P.G. Vercelloni, S. Quaglini, et al. 2018. Changing patterns in clinical-histological presentation and renal outcome over the last five decades in a cohort of 499 patients with lupus nephritis. Annals of the Rheumatic Diseases 77 (9): 1318–1325. https://doi.org/10.1136/annrheumdis-2017-212732.

Article  CAS  PubMed  Google Scholar 

Bajema, I.M., S. Wilhelmus, C.E. Alpers, et al. 2018. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney International 93 (4): 789–796. https://doi.org/10.1016/j.kint.2017.11.023.

Article  PubMed  Google Scholar 

Yung, S., and T.M. Chan. 2017. Anti-dsDNA antibodies and resident renal cells - Their putative roles in pathogenesis of renal lesions in lupus nephritis. Clinical Immunology 185: 40–50. https://doi.org/10.1016/j.clim.2016.09.002.

Comments (0)

No login
gif