Extraction of redox extracellular vesicles using exclusion-based sample preparation

Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer. 2020;20:697–709. https://doi.org/10.1038/s41568-020-00299-w.

Article  PubMed  Google Scholar 

Miller CE, Xu F, Zhao Y, Luo W, Zhong W, Meyer K, et al. Hydrogen peroxide promotes the production of radiation-derived EVs containing mitochondrial proteins. Antioxidants. 2022;11:2119. https://doi.org/10.3390/antiox11112119.

Article  PubMed  PubMed Central  Google Scholar 

Kinoshita T, Yip KW, Spence T, Liu F-F. MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet. 2017;62:67–74. https://doi.org/10.1038/jhg.2016.87.

Article  PubMed  Google Scholar 

Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods, 2015, p. 179–209. https://doi.org/10.1007/978-1-4939-2550-6_15.

Havers M, Broman A, Lenshof A, Laurell T. Advancement and obstacles in microfluidics-based isolation of extracellular vesicles. Anal Bioanal Chem. 2023;415:1265–85. https://doi.org/10.1007/s00216-022-04362-3.

Article  PubMed  Google Scholar 

Nguyen A, Turko IV. Isolation protocols and mitochondrial content for plasma extracellular vesicles. Anal Bioanal Chem. 2023;415:1299–304. https://doi.org/10.1007/s00216-022-04465-x.

Article  PubMed  Google Scholar 

Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, Costa-García A, López-Martín S, Yáñez-Mó M, et al. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles. 2016;5:31803. https://doi.org/10.3402/jev.v5.31803.

Article  PubMed  Google Scholar 

Sharma P, Ludwig S, Muller L, Hong CS, Kirkwood JM, Ferrone S, et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. 2018;7:1435138. https://doi.org/10.1080/20013078.2018.1435138.

Article  PubMed  PubMed Central  Google Scholar 

Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun. 2014;5:3591. https://doi.org/10.1038/ncomms4591.

Article  PubMed  Google Scholar 

Fang S, Tian H, Li X, Jin D, Li X, Kong J, et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One. 2017;12:e0175050. https://doi.org/10.1371/journal.pone.0175050.

Article  PubMed  PubMed Central  Google Scholar 

Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16:3033–42. https://doi.org/10.1039/C6LC00279J.

Article  PubMed  PubMed Central  Google Scholar 

Ni F, Zhu Q, Li H, Liu F, Chen H. Efficient preparation of high-purity and intact mesenchymal stem cell–derived extracellular vesicles. Anal Bioanal Chem. 2024;416:1797–808. https://doi.org/10.1007/s00216-024-05193-0.

Article  PubMed  Google Scholar 

Ströhle G, Gan J, Li H. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal Bioanal Chem. 2022;414:7051–67. https://doi.org/10.1007/s00216-022-04178-1.

Article  PubMed  Google Scholar 

Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T, et al. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience. 2013;248:345–58. https://doi.org/10.1016/j.neuroscience.2013.06.010.

Article  PubMed  Google Scholar 

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:1–13. https://doi.org/10.1155/2017/8416763.

Article  Google Scholar 

Dalleau S, Baradat M, Guéraud F, Huc L. Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013;20:1615–30. https://doi.org/10.1038/cdd.2013.138.

Article  PubMed  PubMed Central  Google Scholar 

Chiarpotto* E, Domenicotti* C, Paola D, Vitali A, Nitti M, Pronzato MA, et al. Regulation of rat hepatocyte protein kinase C ? isoenzymes by the lipid peroxidation product 4-hydroxy-2,3-nonenal: a signaling pathway to modulate vesicular transport of glycoproteins. Hepatology 1999;29:1565–72. https://doi.org/10.1002/hep.510290510.

Uchida K, Toyokuni S, Nishikawa K, Kawakishi S, Oda H, Hiai H, et al. Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry. 1994;33:12487–94. https://doi.org/10.1021/bi00207a016.

Article  PubMed  Google Scholar 

Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev. 2008;28:569–631. https://doi.org/10.1002/med.20117.

Article  PubMed  Google Scholar 

Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G, et al. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem. 2002;69:1161–9. https://doi.org/10.1046/j.1471-4159.1997.69031161.x.

Article  Google Scholar 

Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20:148–60. https://doi.org/10.1038/s41583-019-0132-6.

Article  PubMed  PubMed Central  Google Scholar 

Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:1–21. https://doi.org/10.5402/2012/137289.

Article  Google Scholar 

Bader Lange ML, Cenini G, Piroddi M, Mohmmad Abdul H, Sultana R, Galli F, et al. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis. 2008;29:456–64. https://doi.org/10.1016/j.nbd.2007.11.004.

Article  PubMed  Google Scholar 

Firl N, Kienberger H, Hauser T, Rychlik M. Determination of the fatty acid profile of neutral lipids, free fatty acids and phospholipids in human plasma. Clinical Chemistry and Laboratory Medicine (CCLM). 2013;51:799–810. https://doi.org/10.1515/cclm-2012-0203.

Article  PubMed  Google Scholar 

Morel O, Jesel L, Freyssinet J-M, Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol. 2011;31:15–26. https://doi.org/10.1161/ATVBAHA.109.200956.

Article  PubMed  Google Scholar 

Ho J, Chaiswing L, Clair DK. Extracellular vesicles and cancer therapy: insights into the role of oxidative stress. Antioxidants. 2022;11:1194. https://doi.org/10.3390/antiox11061194.

Article  PubMed  PubMed Central  Google Scholar 

Zhang S, Eitan E, Wu T-Y, Mattson MP. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging. 2018;61:52–65. https://doi.org/10.1016/j.neurobiolaging.2017.09.016.

Article  PubMed  Google Scholar 

Szweda LI, Uchida K, Tsai L, Stadtman ER. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem. 1993;268:3342–7.

Article  PubMed  Google Scholar 

Sukati S, Ho J, Chaiswing L, Sompol P, Pandit H, Wei W, et al. Extracellular vesicles released after cranial radiation: an insight into an early mechanism of brain injury. Brain Res. 2022;1782: 147840. https://doi.org/10.1016/j.brainres.2022.147840.

Article  PubMed  PubMed Central  Google Scholar 

Rummel NG, Chaiswing L, Bondada S, Clair DK, Butterfield DA. Chemotherapy-induced cognitive impairment: focus on the intersection of oxidative stress and TNFα. Cell Molecular Life Sci. 2021;78:6533–40. https://doi.org/10.1007/s00018-021-03925-4.

Article  Google Scholar 

Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular vesicles: mechanisms in human health and disease. Antioxid Redox Signal. 2019;30:813–56. https://doi.org/10.1089/ars.2017.7265.

Article  PubMed  Google Scholar 

Ricklefs FL, Wollmann K, Salviano-Silva A, Drexler R, Maire CL, Kaul MG, et al. Circulating extracellular vesicles as biomarker for diagnosis, prognosis, and monitoring in glioblastoma patients. Neuro Oncol. 2024;26:1280–91. https://doi.org/10.1093/neuonc/noae068.

Article  PubMed 

Comments (0)

No login
gif