Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer. 2020;20:697–709. https://doi.org/10.1038/s41568-020-00299-w.
Miller CE, Xu F, Zhao Y, Luo W, Zhong W, Meyer K, et al. Hydrogen peroxide promotes the production of radiation-derived EVs containing mitochondrial proteins. Antioxidants. 2022;11:2119. https://doi.org/10.3390/antiox11112119.
Article PubMed PubMed Central Google Scholar
Kinoshita T, Yip KW, Spence T, Liu F-F. MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet. 2017;62:67–74. https://doi.org/10.1038/jhg.2016.87.
Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods, 2015, p. 179–209. https://doi.org/10.1007/978-1-4939-2550-6_15.
Havers M, Broman A, Lenshof A, Laurell T. Advancement and obstacles in microfluidics-based isolation of extracellular vesicles. Anal Bioanal Chem. 2023;415:1265–85. https://doi.org/10.1007/s00216-022-04362-3.
Nguyen A, Turko IV. Isolation protocols and mitochondrial content for plasma extracellular vesicles. Anal Bioanal Chem. 2023;415:1299–304. https://doi.org/10.1007/s00216-022-04465-x.
Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, Costa-García A, López-Martín S, Yáñez-Mó M, et al. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles. 2016;5:31803. https://doi.org/10.3402/jev.v5.31803.
Sharma P, Ludwig S, Muller L, Hong CS, Kirkwood JM, Ferrone S, et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. 2018;7:1435138. https://doi.org/10.1080/20013078.2018.1435138.
Article PubMed PubMed Central Google Scholar
Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun. 2014;5:3591. https://doi.org/10.1038/ncomms4591.
Fang S, Tian H, Li X, Jin D, Li X, Kong J, et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One. 2017;12:e0175050. https://doi.org/10.1371/journal.pone.0175050.
Article PubMed PubMed Central Google Scholar
Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16:3033–42. https://doi.org/10.1039/C6LC00279J.
Article PubMed PubMed Central Google Scholar
Ni F, Zhu Q, Li H, Liu F, Chen H. Efficient preparation of high-purity and intact mesenchymal stem cell–derived extracellular vesicles. Anal Bioanal Chem. 2024;416:1797–808. https://doi.org/10.1007/s00216-024-05193-0.
Ströhle G, Gan J, Li H. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal Bioanal Chem. 2022;414:7051–67. https://doi.org/10.1007/s00216-022-04178-1.
Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T, et al. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience. 2013;248:345–58. https://doi.org/10.1016/j.neuroscience.2013.06.010.
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:1–13. https://doi.org/10.1155/2017/8416763.
Dalleau S, Baradat M, Guéraud F, Huc L. Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013;20:1615–30. https://doi.org/10.1038/cdd.2013.138.
Article PubMed PubMed Central Google Scholar
Chiarpotto* E, Domenicotti* C, Paola D, Vitali A, Nitti M, Pronzato MA, et al. Regulation of rat hepatocyte protein kinase C ? isoenzymes by the lipid peroxidation product 4-hydroxy-2,3-nonenal: a signaling pathway to modulate vesicular transport of glycoproteins. Hepatology 1999;29:1565–72. https://doi.org/10.1002/hep.510290510.
Uchida K, Toyokuni S, Nishikawa K, Kawakishi S, Oda H, Hiai H, et al. Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry. 1994;33:12487–94. https://doi.org/10.1021/bi00207a016.
Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev. 2008;28:569–631. https://doi.org/10.1002/med.20117.
Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G, et al. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem. 2002;69:1161–9. https://doi.org/10.1046/j.1471-4159.1997.69031161.x.
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20:148–60. https://doi.org/10.1038/s41583-019-0132-6.
Article PubMed PubMed Central Google Scholar
Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:1–21. https://doi.org/10.5402/2012/137289.
Bader Lange ML, Cenini G, Piroddi M, Mohmmad Abdul H, Sultana R, Galli F, et al. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis. 2008;29:456–64. https://doi.org/10.1016/j.nbd.2007.11.004.
Firl N, Kienberger H, Hauser T, Rychlik M. Determination of the fatty acid profile of neutral lipids, free fatty acids and phospholipids in human plasma. Clinical Chemistry and Laboratory Medicine (CCLM). 2013;51:799–810. https://doi.org/10.1515/cclm-2012-0203.
Morel O, Jesel L, Freyssinet J-M, Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol. 2011;31:15–26. https://doi.org/10.1161/ATVBAHA.109.200956.
Ho J, Chaiswing L, Clair DK. Extracellular vesicles and cancer therapy: insights into the role of oxidative stress. Antioxidants. 2022;11:1194. https://doi.org/10.3390/antiox11061194.
Article PubMed PubMed Central Google Scholar
Zhang S, Eitan E, Wu T-Y, Mattson MP. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging. 2018;61:52–65. https://doi.org/10.1016/j.neurobiolaging.2017.09.016.
Szweda LI, Uchida K, Tsai L, Stadtman ER. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem. 1993;268:3342–7.
Sukati S, Ho J, Chaiswing L, Sompol P, Pandit H, Wei W, et al. Extracellular vesicles released after cranial radiation: an insight into an early mechanism of brain injury. Brain Res. 2022;1782: 147840. https://doi.org/10.1016/j.brainres.2022.147840.
Article PubMed PubMed Central Google Scholar
Rummel NG, Chaiswing L, Bondada S, Clair DK, Butterfield DA. Chemotherapy-induced cognitive impairment: focus on the intersection of oxidative stress and TNFα. Cell Molecular Life Sci. 2021;78:6533–40. https://doi.org/10.1007/s00018-021-03925-4.
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular vesicles: mechanisms in human health and disease. Antioxid Redox Signal. 2019;30:813–56. https://doi.org/10.1089/ars.2017.7265.
Ricklefs FL, Wollmann K, Salviano-Silva A, Drexler R, Maire CL, Kaul MG, et al. Circulating extracellular vesicles as biomarker for diagnosis, prognosis, and monitoring in glioblastoma patients. Neuro Oncol. 2024;26:1280–91. https://doi.org/10.1093/neuonc/noae068.
Comments (0)