Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun. 2014;5:3936–44.
Article PubMed CAS Google Scholar
Park SY, Yoon SA, Cha Y, Lee MH. Recent advances in fluorescent probes for cellular antioxidants: Detection of NADH, hNQO1, H2S, and other redox biomolecules. Coord Chem Rev. 2021;428: 213613.
Sun P, Zhang H, Sun Y, Liu J. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. Spectrochim Acta A Mol Biomol Spectrosc. 2021;245: 118919.
Article PubMed CAS Google Scholar
Hung YP, Albeck JG, Tantama M, Yellen G. Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab. 2011;14:545–54.
Article PubMed PubMed Central CAS Google Scholar
Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 2011;14:555–66.
Article PubMed PubMed Central CAS Google Scholar
Xie W, Xu A, Yeung ES. Determination of NAD+ and NADH in a Single Cell under Hydrogen Peroxide Stress by Capillary Electrophoresis. Anal Chem. 2009;81:1280–4.
Article PubMed CAS Google Scholar
Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095–107.
Article PubMed PubMed Central CAS Google Scholar
Zhu S, Lei C, Sun J, Zhao X, Wang X, Yan X, Liu W, Wang H. Probing NAD+/NADH-dependent biocatalytic transformations based on oxidase mimics of MnO2. Sens Actuators B. 2019;282:896–903.
Tao R, Zhao Y, Chu H, Wang A, Zhu J, Chen X, Zou Y, Shi M, Liu R, Su N, Du J, Zhou HM, Zhu L, Qian X, Liu H, Loscalzo J, Yang Y. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14:720–8.
Article PubMed PubMed Central CAS Google Scholar
Gorton L, Domínguez E. Electrochemistry of NAD(P)+/NAD(P)H. In: Bard AJ (ed) Encyclopedia of Electrochemistry. Wiley. 2007. https://doi.org/10.1002/9783527610426.bard090004.
Radoi A, Compagnone D. Recent advances in NADH electrochemical sensing design. Bioelectrochemistry. 2009;76:126–34.
Article PubMed CAS Google Scholar
Moiroux J, Elving PJ. Effects of Adsorption, Electrode Material, and Operational Variables on the Oxidation of Dihydronicotinamide Adenine Dinucleotide at Carbon Electrodes. Anal Chem. 1978;50:1056–62.
Revenga-Parra M, Gómez-Anquela C, García-Mendiola T, Gonzalez E, Pariente F, Lorenzo E. Grafted Azure A modified electrodes as disposable β- nicotinamide adenine dinucleotide sensors. Anal Chim Acta. 2012;747:84–91.
Article PubMed CAS Google Scholar
Mano N, Thienpont A, Kuhn A. Adsorption and catalytic activity of trinitro- fluorenone derivatives towards NADH oxidation on different electrode materials. Electrochem Commun. 2001;3:585–9.
Maleki A, Nematollahi D, Clausmeyer J, Henig J, Plumeré N, Schuhmann W. Electrodeposition of catechol on glassy carbon electrode and its electrocatalytic activity toward NADH oxidation. Electroanalysis. 2012;24:1932–6.
Omar FS, Duraisamy N, Ramesh K, Ramesh S. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH). Biosens Bioelectron. 2016;79:763–75.
Article PubMed CAS Google Scholar
Kumar SA, Chen SM. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review. Sensors. 2008;8:739–66.
Article PubMed PubMed Central CAS Google Scholar
Han S, Du T, Jiang H, Wang X. Synergistic effect of pyrroloquinoline quinone and graphene nano-interface for facile fabrication of sensitive NADH biosensor. Biosens Bioelectron. 2017;89:422–9.
Article PubMed CAS Google Scholar
del Barrio M, Rana M, Vilatela JJ, Lorenzo E, De Lacey AL, Pita M. Photoelectrocatalytic detection of NADH on n-type silicon semiconductors facilitated by carbon nanotube fibers. Electrochim Acta. 2021;377: 138071.
Bard AJ (ed). Electrogenerated Chemiluminescence (1st ed). CRC Press. 2004. https://doi.org/10.1201/9780203027011.
Gou X, Xing Z, Ma C, Zhu JJ. A Close Look at Mechanism, Application, and Opportunities of Electrochemiluminescence Microscopy. Chem Biomed Imaging. 2023;1:414–33.
Article PubMed PubMed Central CAS Google Scholar
Ma X, Gao W, Du F, Yuan F, Yu J, Guan Y, Sojic N, Xu G. Rational design of electrochemiluminescent devices. Acc Chem Res. 2021;54:2936–45.
Article PubMed CAS Google Scholar
Fiorani A, Han D, Jiang D, Fang D, Paolucci F, Sojic N, Valenti G. Spatially resolved electrochemiluminescence through a chemical lens. Chem Sci. 2020;11:10496–500.
Article PubMed PubMed Central CAS Google Scholar
Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye-Doped Silica Nanoparticles for Enhanced ECL-Based Immunoassay Analytical Performance. Angew Chem Int Ed. 2020;59:21858–63.
Du F, Chen Y, Meng C, Lou B, Zhang W, Xu G. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy. Curr Opin Electrochem. 2021;28: 100725.
Dutta P, Han D, Goudeau B, Jiang D, Fang D, Sojic N. Reactivity mapping of luminescence in space: insights into heterogeneous electrochemiluminescence bioassays. Biosens Bioelectron. 2020;165: 112372.
Article PubMed CAS Google Scholar
Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. Annu Rev Anal Chem. 2019;12:275–95.
Rebeccani S, Zanut A, Santo CI, Valenti G, Paolucci F. A Guide Inside Electrochemiluminescent Microscopy Mechanisms for Analytical Performance Improvement. Anal Chem. 2022;94:336–48.
Article PubMed CAS Google Scholar
Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence detection of single entities. Chem Sci. 2021;12:5720–36.
Article PubMed PubMed Central CAS Google Scholar
Meng C, Knežević S, Du F, Guan Y, Kanoufi F, Sojic N, Xu G. Recent advances in electrochemiluminescence imaging analysis. eScience. 2022;2:591–605.
Wilson AJ, Marchuk K, Willets KA. Imaging Electrogenerated Chemiluminescence at Single Gold Nanowire Electrodes. Nano Lett. 2015;15:6110–5.
Article PubMed CAS Google Scholar
Dick JE, Renault C, Kim BK, Bard AJ. Simultaneous Detection of Single Attoliter Droplet Collisions by Electrochemical and Electrogenerated Chemiluminescent Responses. Angew Chem Int Ed. 2014;53:11859–62.
Fan FRF, Park S, Zhu Y, Ruoff RS, Bard AJ. Electrogenerated Chemiluminescence of Partially Oxidized Highly Oriented Pyrolytic Graphite Surfaces and of Graphene Oxide Nanoparticles. J Am Chem Soc. 2009;131:937–9.
Comments (0)