Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes

Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun. 2014;5:3936–44.

Article  PubMed  CAS  Google Scholar 

Park SY, Yoon SA, Cha Y, Lee MH. Recent advances in fluorescent probes for cellular antioxidants: Detection of NADH, hNQO1, H2S, and other redox biomolecules. Coord Chem Rev. 2021;428: 213613.

Article  CAS  Google Scholar 

Sun P, Zhang H, Sun Y, Liu J. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. Spectrochim Acta A Mol Biomol Spectrosc. 2021;245: 118919.

Article  PubMed  CAS  Google Scholar 

Hung YP, Albeck JG, Tantama M, Yellen G. Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab. 2011;14:545–54.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 2011;14:555–66.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xie W, Xu A, Yeung ES. Determination of NAD+ and NADH in a Single Cell under Hydrogen Peroxide Stress by Capillary Electrophoresis. Anal Chem. 2009;81:1280–4.

Article  PubMed  CAS  Google Scholar 

Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095–107.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhu S, Lei C, Sun J, Zhao X, Wang X, Yan X, Liu W, Wang H. Probing NAD+/NADH-dependent biocatalytic transformations based on oxidase mimics of MnO2. Sens Actuators B. 2019;282:896–903.

Article  CAS  Google Scholar 

Tao R, Zhao Y, Chu H, Wang A, Zhu J, Chen X, Zou Y, Shi M, Liu R, Su N, Du J, Zhou HM, Zhu L, Qian X, Liu H, Loscalzo J, Yang Y. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14:720–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gorton L, Domínguez E. Electrochemistry of NAD(P)+/NAD(P)H. In: Bard AJ (ed) Encyclopedia of Electrochemistry. Wiley. 2007. https://doi.org/10.1002/9783527610426.bard090004.

Radoi A, Compagnone D. Recent advances in NADH electrochemical sensing design. Bioelectrochemistry. 2009;76:126–34.

Article  PubMed  CAS  Google Scholar 

Moiroux J, Elving PJ. Effects of Adsorption, Electrode Material, and Operational Variables on the Oxidation of Dihydronicotinamide Adenine Dinucleotide at Carbon Electrodes. Anal Chem. 1978;50:1056–62.

Article  CAS  Google Scholar 

Revenga-Parra M, Gómez-Anquela C, García-Mendiola T, Gonzalez E, Pariente F, Lorenzo E. Grafted Azure A modified electrodes as disposable β- nicotinamide adenine dinucleotide sensors. Anal Chim Acta. 2012;747:84–91.

Article  PubMed  CAS  Google Scholar 

Mano N, Thienpont A, Kuhn A. Adsorption and catalytic activity of trinitro- fluorenone derivatives towards NADH oxidation on different electrode materials. Electrochem Commun. 2001;3:585–9.

Article  CAS  Google Scholar 

Maleki A, Nematollahi D, Clausmeyer J, Henig J, Plumeré N, Schuhmann W. Electrodeposition of catechol on glassy carbon electrode and its electrocatalytic activity toward NADH oxidation. Electroanalysis. 2012;24:1932–6.

Article  CAS  Google Scholar 

Omar FS, Duraisamy N, Ramesh K, Ramesh S. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH). Biosens Bioelectron. 2016;79:763–75.

Article  PubMed  CAS  Google Scholar 

Kumar SA, Chen SM. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review. Sensors. 2008;8:739–66.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Han S, Du T, Jiang H, Wang X. Synergistic effect of pyrroloquinoline quinone and graphene nano-interface for facile fabrication of sensitive NADH biosensor. Biosens Bioelectron. 2017;89:422–9.

Article  PubMed  CAS  Google Scholar 

del Barrio M, Rana M, Vilatela JJ, Lorenzo E, De Lacey AL, Pita M. Photoelectrocatalytic detection of NADH on n-type silicon semiconductors facilitated by carbon nanotube fibers. Electrochim Acta. 2021;377: 138071.

Article  Google Scholar 

Bard AJ (ed). Electrogenerated Chemiluminescence (1st ed). CRC Press. 2004. https://doi.org/10.1201/9780203027011.

Gou X, Xing Z, Ma C, Zhu JJ. A Close Look at Mechanism, Application, and Opportunities of Electrochemiluminescence Microscopy. Chem Biomed Imaging. 2023;1:414–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma X, Gao W, Du F, Yuan F, Yu J, Guan Y, Sojic N, Xu G. Rational design of electrochemiluminescent devices. Acc Chem Res. 2021;54:2936–45.

Article  PubMed  CAS  Google Scholar 

Fiorani A, Han D, Jiang D, Fang D, Paolucci F, Sojic N, Valenti G. Spatially resolved electrochemiluminescence through a chemical lens. Chem Sci. 2020;11:10496–500.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye-Doped Silica Nanoparticles for Enhanced ECL-Based Immunoassay Analytical Performance. Angew Chem Int Ed. 2020;59:21858–63.

Article  CAS  Google Scholar 

Du F, Chen Y, Meng C, Lou B, Zhang W, Xu G. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy. Curr Opin Electrochem. 2021;28: 100725.

Article  CAS  Google Scholar 

Dutta P, Han D, Goudeau B, Jiang D, Fang D, Sojic N. Reactivity mapping of luminescence in space: insights into heterogeneous electrochemiluminescence bioassays. Biosens Bioelectron. 2020;165: 112372.

Article  PubMed  CAS  Google Scholar 

Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. Annu Rev Anal Chem. 2019;12:275–95.

Article  CAS  Google Scholar 

Rebeccani S, Zanut A, Santo CI, Valenti G, Paolucci F. A Guide Inside Electrochemiluminescent Microscopy Mechanisms for Analytical Performance Improvement. Anal Chem. 2022;94:336–48.

Article  PubMed  CAS  Google Scholar 

Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence detection of single entities. Chem Sci. 2021;12:5720–36.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meng C, Knežević S, Du F, Guan Y, Kanoufi F, Sojic N, Xu G. Recent advances in electrochemiluminescence imaging analysis. eScience. 2022;2:591–605.

Article  Google Scholar 

Wilson AJ, Marchuk K, Willets KA. Imaging Electrogenerated Chemiluminescence at Single Gold Nanowire Electrodes. Nano Lett. 2015;15:6110–5.

Article  PubMed  CAS  Google Scholar 

Dick JE, Renault C, Kim BK, Bard AJ. Simultaneous Detection of Single Attoliter Droplet Collisions by Electrochemical and Electrogenerated Chemiluminescent Responses. Angew Chem Int Ed. 2014;53:11859–62.

Article  CAS  Google Scholar 

Fan FRF, Park S, Zhu Y, Ruoff RS, Bard AJ. Electrogenerated Chemiluminescence of Partially Oxidized Highly Oriented Pyrolytic Graphite Surfaces and of Graphene Oxide Nanoparticles. J Am Chem Soc. 2009;131:937–9.

Article  PubMed  CAS 

Comments (0)

No login
gif