Development of calcium alginate gel sphere-based SERS substrates for minimally invasive sampling and identification of indigo on the surface of simulated murals and aged imitation cultural relic samples

Zadrożna I, Połeć-Pawlak K, Głuch I, et al. Old Master paintings – a fruitful field of activity for analysts: targets, methods, outlook. J Sep Sci. 2003;26:996–1004. https://doi.org/10.1002/jssc.200301483.

Article  CAS  Google Scholar 

Vahur S, Knuutinen U and Leito I (2009) Atr-Ft-Ir Spectroscopy in the Region of 500–230 cm−1 for Identification of Inorganic Red Pigments. Spectrochim Acta A 73:764–71. https://doi.org/10.1016/j.saa.2009.03.027.

Vahur S, Teearu A, Leito I. Atr-Ft-Ir spectroscopy in the region of 550–230 cm−1 for identification of inorganic pigments. Spectrochim Acta A. 2021;75:1061–72. https://doi.org/10.1016/j.saa.2009.12.056.

Article  CAS  Google Scholar 

Madariaga JM, Maguregui M, Castro K, et al. Portable Raman, drifts, and xrf analysis to diagnose the conservation state of two wall painting panels from pompeii deposited in the naples national archaeological museum (Italy). Appl Spectrosc. 2016;70:137–46. https://doi.org/10.1177/0003702815616589.

Article  CAS  PubMed  Google Scholar 

Li Y, Wang F, Fu X, et al. Analysis of the pigments for smoked mural by confocal micro-Raman spectroscopy. J Raman Spectrosc. 2017;48:1479–86. https://doi.org/10.1002/jrs.5158.

Article  CAS  Google Scholar 

Splitstoser JC, Dillehay TD, Wouters J, et al. Early pre-Hispanic use of indigo blue in Peru. Sci Adv. 2016;2:e1501623. https://doi.org/10.1126/sciadv.1501623.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Fan B, Li D et al. Rapid Electrochemical Analysis of Plant and Synthetic Indigo Dyes. Int J Electrochem Sc. 2021;16:2010427. https://doi.org/10.20964/2021.04.56.

Liau BC, Jong TT, Lee MR, et al. LC-APCI-MS method for detection and analysis of tryptanthrin, indigo, and indirubin in daqingye and banlangen. J Pharmaceut Biomed. 2007;43(1):346–51. https://doi.org/10.1016/j.jpba.2006.06.029.

Article  CAS  Google Scholar 

Sanz E, Arteaga A, García MA, et al. Chromatographic analysis of indigo from Maya Blue by LC-DAD-QTOF. J Archaeol Sci. 2012;39:3516–23. https://doi.org/10.1016/j.jas.2012.06.019.

Article  CAS  Google Scholar 

Petroviciua I, Vanden Berghe I, Cretu I et al (2017) Identification of natural dyes in historical textiles from Romanian collections by LC-DAD and LC-MS (single stage and tandem MS). J Cult Herit 13:89–97. https://doi.org/10.1016/j.culher.2011.05.004.

Manhita A, Balcaen L, Vanhaecke F, et al. Unveiling the colour palette of Arraiolos carpets: material study of carpets from the 17th to 19th century period by HPLC-DAD-MS and ICP-MS. J Cult Herit. 2014;15:292–9. https://doi.org/10.1016/j.culher.2013.04.005.

Article  Google Scholar 

Bernardino ND, Constantino VRL, de Faria DLA. Probing the indigo molecule in Maya Blue simulants with resonance Raman spectroscopy. J Phys Chem C. 2018;122:11505–15. https://doi.org/10.1021/acs.jpcc.8b01406.

Article  CAS  Google Scholar 

Ogalde JP, Berke H, Ogalde C, et al. Archaeometric analysis of textile fiber dyes from the Topater-1 Site, Calama, Northern Chile, Middle Formative Period (ca. 400–200 BCE). J Archaeol Sc Rep. 2023;47:103735. https://doi.org/10.1016/j.jasrep.2022.103735.

Article  Google Scholar 

Vasileiadou A, Karapanagiotis I, Zotou A. UV-induced degradation of wool and silk dyed with shellfish purple. Dyes Pigments. 2019;168:317–26. https://doi.org/10.1016/j.dyepig.2019.04.068.

Article  CAS  Google Scholar 

Vasileiadou A, Karapanagiotis I, Zotou A. A chromatographic investigation on ageing of natural dyes in silk under UV light. Archaeol Anthrop Sci. 2021;14:21. https://doi.org/10.1007/s12520-021-01492-0.

Article  Google Scholar 

Witkos K, Lech K, Jarosz M. Identification of degradation products of indigoids by tandem mass spectrometry. J Mass Spectrom. 2015;50:1245–51. https://doi.org/10.1002/jms.3641.

Article  CAS  PubMed  Google Scholar 

Oakley LH, Fabian DM, Mayhew HE, et al. Pretreatment strategies for SERS analysis of indigo and Prussian blue in aged painted surfaces. Anal Chem. 2012;84:8006–12. https://doi.org/10.1021/ac301814e.

Article  CAS  PubMed  Google Scholar 

Peruzzi G, Ciccola A, Bosi A, et al. Applying gel-supported liquid extraction to Tutankhamun’s textiles for the identification of ancient colorants: a case study. Gels. 2023;9: 514. https://doi.org/10.3390/gels9070514.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan M, Kang X, Wei L, Hu X, Han C, Li X, Liu H, Qu L, Zhao Z. A dual-mode strategy combining SERS with MALDI FTICR MS based on core-shell silver nanoparticles for dye identification and semi-quantification in unearthed silks from Tang Dynasty. Talanta. 2022;1:241–123277. https://doi.org/10.1016/j.talanta.2022.123277.

Article  CAS  Google Scholar 

Nardo VM, Sinopoli A, Kabalan L, et al. SERS and DFT study of indigo adsorbed on silver nanostructured surface. Spectrochim Acta A. 2018;205:465–9. https://doi.org/10.1016/j.saa.2018.07.059.

Article  CAS  Google Scholar 

Bruni S, Guglielmi V, Pozzi F. Surface-Enhanced Raman Spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes: Tyrian purple and madder. J Raman Spectrosc. 2012;41:175–80. https://doi.org/10.1002/jrs.2456.

Article  CAS  Google Scholar 

Yao M, Liu J, Narengaowa, et al. In situ detection of natural dyes in archaeological textiles by SERS substrates immobilized on the fiber. Microchem J. 2023;192:108939. https://doi.org/10.1016/j.microc.2023.108939.

Platania E, Lofrumentol C, Lottini E, et al. Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Anal Bioanal Chem. 2015;407:6505–14. https://doi.org/10.1007/s00216-015-8816-x.

Proietti N, Presciutti F, Tullio VD, et al. Unilateral NMR, 13C CPMAS NMR spectroscopy and micro-analytical techniques for studying the materials and state of conservation of an ancient Egyptian wooden sarcophagus. Anal Bioanal Chem. 2011;399:3117–31. https://doi.org/10.1007/s00216-010-4229-z.

Article  CAS  PubMed  Google Scholar 

Kurouski D, Zaleski S, Casadio F, et al. Tip-Enhanced Raman Spectroscopy (TERS) for in situ identification of Indigo and iron gall ink on paper. J Am Chem Soc. 2014;136(24):8677–84.

Article  CAS  PubMed  Google Scholar 

Mastrangelo R, Chelazzi D, Poggi G, et al. Twin-chain polymer hydrogels based on Poly(Vinyl Alcohol) as new advanced tool for the cleaning of modern and contemporary art. Proc Natl Acad Sci USA. 2020;117:7011–20. https://doi.org/10.1073/pnas.1911811117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amato F, Micciche C, Cannas M, et al. Ag nanoparticles Agargel nanocomposites for sers detection of cultural heritage interest pigments. Eur Phys J Plus. 2018;133:74. https://doi.org/10.1140/epjp/i2018-11907-2.

Article  CAS  Google Scholar 

Calvano CD, Rigante ECL, Cataldi TRI, et al. In situ hydrogel extraction with dual-enzyme digestion of proteinaceous binders: the key for reliable mass spectrometry investigations of artworks. Anal Chem. 2020;92:10257–61. https://doi.org/10.1021/acs.analchem.0c01898.

Article  CAS  PubMed  Google Scholar 

Ma J, Liu X, Wang R, et al. Bimetallic core-shell nanostars with tunable surface plasmon resonance for surface-enhanced Raman scattering. ACS Appl Nano Mater. 2020;11:10885–94. https://doi.org/10.1021/acsanm.0c02144.

Article  CAS  Google Scholar 

Sanchez-Iglesias A, Winckelmans N, Altantzis T, et al. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J Am Chem Soc. 2017;139:107–10. https://doi.org/10.1021/jacs.6b12143.

Article  CAS  PubMed  Google Scholar 

Sudeshna DC, Subrata M, Biswarup S, et al. Wide range morphological transition of silver nanoprisms by selective interaction with As(III): tuning−detuning of surface plasmon offers to decode the mechanism. J Phys Chem C. 2019;123:11044–54. https://doi.org/10.1021/acs.jpcc.8b10799.

Article  CAS  Google Scholar 

Chen J, Yang Y, Lin B, et al. Calcium alginate gel beads containing gold nanobipyramids for surface-enhanced raman scattering detection in aqueous samples. ACS Appl Nano Mater. 2021;4:10287–95. https://doi.org/10.1021/acsanm.1c01789.

Article  CAS  Google Scholar 

Suyi L, Qian W, Leduo Z. Detection and Classification of Fabric Color Difference Based on Fuzzy Artificial Neural Network. International Symposium on Computational Intelligence and Design, Wuhan, China. 2008;108–111. https://doi.org/10.1109/ISCID.2008.85.

Iuga C, Ortiz E, Alvarez-Idaboy JR, et al. Molecular description of indigo oxidation mechanisms initiated by OH and OOH radicals. J Phys Chem A. 2012;116:3643–51. https://doi.org/10.1021/jp211493k.

Article  CAS  PubMed  Google Scholar 

Zhou X, Guo Y, Shi L, et al. Degradation pathways and mechanisms insight of indigo and shikonin with experiments and quantum chemical calculations. Dyes Pigments. 2023;218: 111455. https://doi.org/10.1016/j.dyepig.2023.111455.

Article  CAS 

Comments (0)

No login
gif