Jimeno B, Rubalcaba JG. Modelling the role of glucocorticoid receptor as mediator of endocrine responses to environmental challenge. Philos Trans R Soc Lond B Biol Sci. 2024;379(1898):20220501. https://doi.org/10.1098/rstb.2022.0501.
Article CAS PubMed PubMed Central Google Scholar
Luo J, Zhou C, Wang S, Tao S, Liao Y, Shi Z, Tang Z, Wu Y, Liu Y, Yang P. Cortisol synergizing with endoplasmic reticulum stress induces regulatory T-cell dysfunction. Immunology. 2023;170(3):334–43. https://doi.org/10.1111/imm.13669.
Article CAS PubMed Google Scholar
El-Farhan N, Rees DA, Evans C. Measuring cortisol in serum, urine and saliva - are our assays good enough? Ann Clin Biochem. 2017;54(3):308–22. https://doi.org/10.1177/0004563216687335.
Article CAS PubMed Google Scholar
Choi MH. Clinical and technical aspects in free cortisol measurement. Endocrinol Metab (Seoul). 2022;37(4):599–607. https://doi.org/10.3803/EnM.2022.1549.
Article CAS PubMed Google Scholar
Mu D, Fang J, Yu S, Ma Y, Cheng J, Hu Y, Song A, Zhao F, Zhang Q, Qi Z, Zhang K, Xia L, Qiu L, Zhu H, Cheng X. Comparison of direct and extraction immunoassay methods with liquid chromatography-tandem mass spectrometry measurement of urinary free cortisol for the diagnosis of Cushing’s syndrome. Ann Lab Med. 2024;44(1):29–37. https://doi.org/10.3343/alm.2024.44.1.29.
Article CAS PubMed Google Scholar
Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163–73. https://doi.org/10.1016/j.cmet.2006.07.002.
Article CAS PubMed Google Scholar
Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr Rev. 2020;41(3):bnaa002. https://doi.org/10.1210/endrev/bnaa002.
Article PubMed PubMed Central Google Scholar
Oßwald A, Wang R, Beuschlein F, Hartmann MF, Wudy SA, Bidlingmaier M, Zopp S, Reincke M, Ritzel K. Performance of LC-MS/MS and immunoassay based 24-h urine free cortisol in the diagnosis of Cushing’s syndrome. J Steroid Biochem Mol Biol. 2019;190:193–7. https://doi.org/10.1016/j.jsbmb.2019.04.004.
Article CAS PubMed Google Scholar
Perrin P, Plotton I, Berthiller J, Borson-Chazot F, Raverot G, Raverot V. Urinary free cortisol: an automated immunoassay without extraction for diagnosis of Cushing’s syndrome and follow-up of patients treated by anticortisolic drugs. Clin Endocrinol (Oxf). 2020;93(1):76–8. https://doi.org/10.1111/cen.14200.
Guo W, Li Y, Jiang N, Wu JXW. Is clinical mass spectrometry the future of hormone testing?(Chinese). Chin J Lab Med. 2024;47(07):717–21.
Huang H, Xie F, Zhang F, Xiong YMT. Determination of urinary free cortisol by RIA and establishment of normal reference range. Sichuan Med. 2005;26(3):285–6.
Zhu Q, Zhu F, Zhao J, Xu G, Shao J, Cao RHL. Establishment and performance evaluation of liquid-chromatography tandem-mass spectrometry for determining serum cortisone. Lab Med. 2017;32(6):524–30.
Ray JA, Kish-Trier E, Johnson LM. Measurement of urinary free cortisol and cortisone by LC-MS/MS. Methods Mol Biol. 2022;2546:119–28. https://doi.org/10.1007/978-1-0716-2565-1_11.
Article CAS PubMed Google Scholar
Grau J, Benede JL, Chisvert A, Salvador A. Modified magnetic-based solvent-assisted dispersive solid-phase extraction: application to the determination of cortisol and cortisone in human saliva. J Chromatogr A. 2021;1652:462361. https://doi.org/10.1016/j.chroma.2021.462361.
Article CAS PubMed Google Scholar
Bonnet-Serrano F, Nakib S, Zientek C, Guignat L, Guibourdenche J, Bertherat J, Menet MC. Urinary free cortisol determination and interferences studies using liquid chromatography coupled to tandem mass spectrometry after on-line solid phase extraction based on Turboflow(TM) chromatography. Metabolites. 2023;13(10). https://doi.org/10.3390/metabo13101063.
Bianchi L, Campi B, Sessa MR, De Marco G, Ferrarini E, Zucchi R, Marcocci C, Vitti P, Manetti L, Saba A, Agretti P. Measurement of urinary free cortisol by LC-MS-MS: adoption of a literature reference range and comparison with our current immunometric method. J Endocrinol Invest. 2019;42(11):1299–305. https://doi.org/10.1007/s40618-019-01050-5.
Article CAS PubMed Google Scholar
Turpeinen U, Hämäläinen E. Determination of cortisol in serum, saliva and urine. Best Pract Res Clin Endocrinol Metab. 2013;27(6):795–801. https://doi.org/10.1016/j.beem.2013.10.008.
Article CAS PubMed Google Scholar
Wu Y, Huang W, Jia C, Hu DWL. Improvement of extraction method and analysis of the interferences in the detection of urinary free cortisol. J Tianjin Med Univ. 2022;28(4):436–41.
Wu M, Zhao D, Gu B, Wang Z, Hu J, Yu Z, Yu J. Efficient degradation of aqueous dichloromethane by an enhanced microbial electrolysis cell: degradation kinetics, microbial community and metabolic mechanisms. J Environ Sci (China). 2024;139:150–9. https://doi.org/10.1016/j.jes.2023.05.029.
Article CAS PubMed Google Scholar
Vidal S. Safety first: a recent case of a dichloromethane injection injury. ACS Cent Sci. 2020;6(2):83–6. https://doi.org/10.1021/acscentsci.0c00100.
Article CAS PubMed PubMed Central Google Scholar
Li J, Zheng X, Zhao R, Liu MJZ. Validation of the performance of ethyl acetate extraction for free cortisol in urine. Med Laboratory Sci and Clin. 2021;32(3):35–40.
Zhu G, Xiao Z, Zhu G. Fabrication and characterization of ethyl acetate-hydroxypropyl-beta-cyclodextrin inclusion complex. J Food Sci. 2021;86(8):3589–97. https://doi.org/10.1111/1750-3841.15835.
Article CAS PubMed Google Scholar
Shang Z, Cai W, Cao Y, Wang F, Wang Z, Lu J, Zhang J. An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery. J Pharm Biomed Anal. 2017;146:387–401. https://doi.org/10.1016/j.jpba.2017.09.012.
Article CAS PubMed Google Scholar
Rezaei F, Eikani MH, Nosratinia F, Bidaroni HH. Optimization of ethanol-modified subcritical water extraction of curcuminoids from turmeric (Curcuma longa L.) rhizomes: comparison with conventional techniques. Food Chem. 2023;410:135331. https://doi.org/10.1016/j.foodchem.2022.135331.
Article CAS PubMed Google Scholar
Allay A, Benkirane C, Ben Moumen A, Fauconnier ML, Bouakline H, Nkengurutse J, Serghini Caid H, Elamrani A, Mansouri F. Optimizing ethanol-modified supercritical CO(2) extraction for enhanced bioactive compound recovery in hemp seed oil. Sci Rep. 2025;15(1):8551. https://doi.org/10.1038/s41598-025-91441-x.
Article CAS PubMed PubMed Central Google Scholar
Niu Y, Yang Y, Mao C, Xiao Z. Effects of gallic acid on the release of aroma compounds in Moutai Baijiu. Food Res Int. 2024;176:113655. https://doi.org/10.1016/j.foodres.2023.113655.
Article CAS PubMed Google Scholar
Lin Y, Huang J, Hu Y, Huang Y, Gao Q. Methodology verification of electrochemical luminescence immunoassay for determination 0f 24 hours urinary free cortisol (Chinese). Labeled Immunoassays & Clin Med. 2014;21(3):306–9.
Casals G, Ballesteros MA, Zamora A, Martinez I, Fernandez-Varo G, Mora M, Hanzu FA, Morales-Ruiz M (2024) LC-HRMS and GC-MS profiling of urine free cortisol, cortisone, 6beta-, and 18-hydroxycortisol for the evaluation of glucocorticoid and mineralocorticoid disorders. Biomolecules 14(5). https://doi.org/10.3390/biom14050558
Luo W, Dong Z, Jia C, Huang X, Hao Q, Xie H, Chai M, Wang X, Cao F, Dong L. A urinary cortisol extraction composition, extraction method and extraction device (Chinese). 2024. CN202410430467[P][2024–07–25].
Horowitz GL. Reference intervals: Practical Aspects. EJIFCC. 2008;19(2):95–105.
PubMed PubMed Central Google Scholar
Gu M, Sun Y, Jia C, Fan M, Rrn N, Zhang H, Yuan HWL. Comparability of routine biochemical indexes between dry chemistry and wet chemistry analysis systems (Chinese). Laboratory Medicine. 2019;34(12):1128–32.
Comments (0)