Assessing food by-products macrocomposition by FTIR microspectroscopy

Eurostat. Food waste and food waste prevention - estimates. 2023. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates#Amounts_of_food_waste_at_EU_level. Accessed 27 June 2024.

Dinani ST, Goot AJ. Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: a review. Crit Rev Food Sci Nutr. 2023;63(25):7749–71. https://doi.org/10.1080/10408398.2022.2049692.

Article  Google Scholar 

Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess. 2018;5(1):1. https://doi.org/10.1186/s40643-017-0187-z.

Article  Google Scholar 

Patel A, Mikes F, Bühler S, Matsakas L. Valorization of brewers’ spent grain for the production of lipids by oleaginous yeast. Molecules. 2018;23(12). https://doi.org/10.3390/molecules23123052.

Rayón E, Ferrandiz S, Rico MI, López J, P. Arrieta M. Microstructure, mechanical, and thermogravimetric characterization of cellulosic by-products obtained from biomass seeds. Int J Food Prop. 2015;18(6):1211–22. https://doi.org/10.1080/10942912.2014.884578.

Article  CAS  Google Scholar 

Faeghe J, Faramarz K, Hossein K, Seyed SH. Pectin from carrot pomace: optimization of extraction and physicochemical properties. Carbohydr Polym. 2017;157:1315–22. https://doi.org/10.1016/j.carbpol.2016.11.013.

Article  CAS  Google Scholar 

Parchami M, Ferreira JA, Taherzadeh MJ. Starch and protein recovery from brewer’s spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi – a brewery biorefinery concept. Bioresour Technol. 2021;337:125409. https://doi.org/10.1016/j.biortech.2021.125409.

Article  CAS  PubMed  Google Scholar 

Bond J, Putnam PA. Nutritive value of dehydrated sweet potato trimmings fed to beef steers. J Agric Food Chem. 1967;15(4):726–8. https://doi.org/10.1021/jf60152a002.

Article  CAS  Google Scholar 

Janssens SRM, Smit AB. Reststromen Consumptieaardappelen. Factsheet / LEI Wageningen UR : 2016-013a. LEI, 905, LEI Consument & Keten. 2016. https://edepot.wur.nl/368097.

Food and Agriculture Organization of the United Nations. FAOSTAT: crops and livestock products. 2024. https://www.fao.org/faostat/en/#data/QCL. Accessed 08 Oct 2024.

Leonel M, Carmo EL, Fernandes AM, Soratto RP, Ebúrneo JAM, Garcia ÉL, Santos TPR. Chemical composition of potato tubers: the effect of cultivars and growth conditions. J Food Sci Technol. 2017;54(8):2372–8. https://doi.org/10.1007/s13197-017-2677-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amoroso L, De France KJ, Milz CI, Siqueira G, Zimmermann T, Nyström G. Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustain Chem Eng. 2022;10(1):342–52. https://doi.org/10.1021/acssuschemeng.1c06345.

Article  CAS  Google Scholar 

Kosters PSR, Waldron KW. 15 - production of high-value functional vegetable juices from food co-products. In: Waldron K, editors. Handbook of waste management and co-product recovery in food processing. Woodhead Publishing Series in Food Science, Technology and Nutrition. Sawston: Woodhead Publishing; 2009. p. 376–90. https://doi.org/10.1533/9781845697051.3.376.

Priyadarshini A, Priyadarshini A. Chapter 2 - market dimensions of the fruit juice industry. In: Rajauria G, Tiwari BK, editors. Fruit juices. San Diego: Academic Press; 2018. p. 15–32. https://doi.org/10.1016/B978-0-12-802230-6.00002-3.

Di Giacomo G, Taglieri L. A new high-yield process for the industrial production of carrot juice. Food Bioprocess Technol. 2009;2(4):441–6. https://doi.org/10.1007/s11947-009-0207-x.

Article  CAS  Google Scholar 

Luca MI, Ungureanu-Iuga M, Mironeasa S. Carrot pomace characterization for application in cereal-based products. Appl Sci. 2022;12(16). https://doi.org/10.3390/app12167989.

Verni M, Pontonio E, Krona A, Jacob S, Pinto D, Rinaldi F, Verardo V, Díaz-de-Cerio E, Coda R, Rizzello CG. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: characterization of phenolic compounds and bioactive peptides. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.01831.

Silbir S, Goksungur Y. Natural red pigment production by Monascus purpureus in submerged fermentation systems using a food industry waste: brewer’s spent grain. Foods. 2019;8(5). https://doi.org/10.3390/foods8050161.

Ikram A, Rasheed A, Khan AA, Khan R, Ahmad M, Bashir R, Mohamed MH. Exploring the health benefits and utility of carrots and carrot pomace: a systematic review. Int J Food Prop. 2024;27(1):180–93. https://doi.org/10.1080/10942912.2023.2301569.

Article  Google Scholar 

Vanleenhove B, Van den Wouwer B, Verwee E, Slachmuylders L, Joossens M, Brijs K, Dewettinck K, De Meester S, Raes K. Impact of potato trimming acidification on protein characteristics and bacterial community during long-term storage. LWT. 2024;191:115572. https://doi.org/10.1016/j.lwt.2023.115572.

Article  CAS  Google Scholar 

De Laet E, Bernaerts T, Dewettinck K, Hendrickx ME, Van Loey AM. The effect of different particle size reduction techniques on the biomass microstructure and the influence on the pectin extraction yield and structure. Food Hydrocolloids. 2024;151:109875. https://doi.org/10.1016/j.foodhyd.2024.109875.

Article  CAS  Google Scholar 

Reche C, Rosselló C, Dalmau E, Eim V, Simal S. Quantification of microstructural changes in artichoke by-products by image analysis after high-power ultrasound-assisted extraction of bioactive compounds. LWT. 2022;171:114127. https://doi.org/10.1016/j.lwt.2022.114127.

Article  CAS  Google Scholar 

Verwee E, Vanleenhove B, Van den Wouwer B, Van de Walle D, Brijs K, Raes K, Damme EJMV, Dewettinck K, Skirtach AG. Microscopic study of proteins, starch and cell walls in potato trimmings. LWT. 2024;209:116798. https://doi.org/10.1016/j.lwt.2024.116798.

Article  CAS  Google Scholar 

Belardi I, Marrocchi A, Alfeo V, Sileoni V, De Francesco G, Paolantoni M, Marconi O. Sequential extraction and attenuated total reflection-Fourier transform infrared spectroscopy monitoring in the biorefining of brewer’s spent grain. Molecules. 2023;28(24). https://doi.org/10.3390/molecules28247992.

Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):1771–91. https://doi.org/10.1038/nprot.2014.110.

Siregar S, Nurhikmat A, Amdani RZ, Hatmi RU, Kobarsih M, Kusumaningrum A, Karim MA, Dameswari AH, Siswanto N, Siswoprayogi S, Yuliyanto P. Estimation of proximate composition in rice using ATR-FTIR spectroscopy and chemometrics. ACS Omega. 2024;9(30):32760–8. https://doi.org/10.1021/acsomega.4c02816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu P, McKinnon JJ, Christensen CR, Christensen DA. Using synchrotron transmission FTIR microspectroscopy as a rapid, direct, and nondestructive analytical technique to reveal molecular microstructural-chemical features within tissue in grain barley. J Agric Food Chem. 2004;52(6):1484–94. https://doi.org/10.1021/jf035065a.

Article  CAS  PubMed  Google Scholar 

Zhu J, Wang H, Guo F, Salmén L, Yu Y. Cell wall polymer distribution in bamboo visualized with in situ imaging FTIR. Carbohyd Polym. 2021;274:118653. https://doi.org/10.1016/j.carbpol.2021.118653.

Article  CAS  Google Scholar 

Wang F, Wang C, Song S. A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging. RSC Adv. 2021;11:13636–43. https://doi.org/10.1039/D1RA01013A.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black MJ. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: ‘traps for new users’. PLoS ONE. 2015;10(2):1–11. https://doi.org/10.1371/journal.pone.0116491.

Article  CAS  Google Scholar 

Liyanage S, Dassanayake RS, Bouyanfif A, Rajakaruna E, Ramalingam L, Moustaid-Moussa N, Abidi N. Optimization and validation of cryostat temperature conditions for trans-reflectance mode FTIR microspectroscopic imaging of biological tissues. MethodsX. 2017;4:118–27. https://doi.org/10.1016/j.mex.2017.01.006.

Article  PubMed  PubMed Central  Google Scholar 

Kohler A, Bertrand D, Martens H, Hannesson K, Kirschner C, Ofstad R. Multivariate image analysis of a set of FTIR microspectroscopy images of aged bovine muscle tissue combining image and design information. Anal Bioanal Chem. 2007;389(4):1143–53. https://doi.org/10.1007/s00216-007-1414-9.

Article  CAS  PubMed  Google Scholar 

Toplak M, Read ST, Sandt C, Borondics F. Quasar: easy machine learning for biospectroscopy. Cells. 2021;10(9). https://doi.org/10.3390/cells10092300.

Banas K, Banas A, Gajda M, Pawlicki B, Kwiatek WM, Breese MBH. Pre-processing of Fourier transform infrared spectra by means of multivariate analysis implemented in the r environment. Analyst. 2015;140:2810–4. https://doi.org/10.1039/C5AN00002E.

Article  CAS  PubMed  Google Scholar 

Foundation PS. Python: a high-level, general-purpose programming language. 2008. https://www.python.org/.

Team SD. Spyder: the scientific python development environment. Version 5.x. 2023. https://www.spyder-ide.org/.

Demšar J, Curk T, Erjavec A, Gorup, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A, Štajdohar M, Umek L, Žagar L, Žbontar J, Žitnik M, Zupan B. Orange: data mining toolbox in python. J Mach Learn Res. 2013;14:2349–53.

Lasch P, Naumann D. Spatial resolution in infrared microspectroscopic imaging of tissues. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2006;1758(7):814–29. https://doi.org/10.1016/j.bbamem.2006.06.008. Vibrational Microscopic Imaging: Towards Molecular Pathology.

Sjöö M, Eliasson A-C, Autio K. Comparison of different microscopic methods for the study of starch and other components within potato cells. Food. 2009;3(special issue 1):39–44.

Bordoloi A, Kaur L, Singh J. Parenchyma cell microstructure and textural characteristics of raw and cooked potatoes. Food Chem. 2012;133(4):1092–100. https://doi.org/10.1016/j.foodchem.2011.11.044. Advances in Potato Chemistry, Nutrition and Technology.

Préstamo G, Fuster C, Risueño MC. Effects of blanching and freezing on the structure of carrots cells and their implications for food processing. J Sci Food Agric. 1998;77(2):223–9. https://doi.org/10.1002/(SICI)1097-0010(199806)77:2<223::AID-JSFA29>3.0.CO;2-2

Sucheta, Misra NN, Yadav SK. Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: kinetics, characterization and process economics. Food Hydrocolloids. 2020;102:105592. https://doi.org/10.1016/j.foodhyd.2019.105592.

Sun Y, Kang X, Chen F, Liao X, Hu X. Mechanisms of carrot texture alteration induced by pure effect of high pressure processing. Innov Food Sci Emerg Technol. 2019;54:260–9. https://doi.org/10.1016/j.ifset.2018.08.012.

Article  CAS  Google Scholar 

Knockaert G, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A. Changes in \(\beta \)-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem. 2012;133(1):60–7. https://doi.org/10.1016/j.foodchem.2011.12.066.

Article  CAS 

Comments (0)

No login
gif