Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal Chem. 1980;52(14):2283–9.
Van Acker T, Theiner S, Bolea-Fernandez E, Vanhaecke F, Koellensperger G. Inductively coupled plasma mass spectrometry. Nat Rev Methods Primers. 2023;3(1):52.
Resano M, Aramendía M, García-Ruiz E, Bazo A, Bolea-Fernandez E, Vanhaecke F. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem Sci. 2022;13(16):4436–73.
Article CAS PubMed PubMed Central Google Scholar
Laborda F, Bolea E, Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem. 2014;86(5):2270–8.
Article CAS PubMed Google Scholar
Theiner S, Loehr K, Koellensperger G, Mueller L, Jakubowski N. Single-cell analysis by use of ICP-MS. J Anal At Spectrom. 2020;35(9):1784–813.
Montaño MD, Olesik JW, Barber AG, Challis K, Ranville JF. Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal Bioanal Chem. 2016;408(19):5053–74.
Meermann B, Nischwitz V. ICP-MS for the analysis at the nanoscale – a tutorial review. J Anal At Spectrom. 2018;33(9):1432–68.
Mozhayeva D, Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry – a step towards an ideal method for nanomaterial characterization. J Anal At Spectrom. 2020;35(9):1740–83.
Bolea E, Jimenez MS, Perez-Arantegui J, Vidal JC, Bakir M, Ben-Jeddou K, et al. Analytical applications of single particle inductively coupled plasma mass spectrometry: a comprehensive and critical review. Anal Methods. 2021;13(25):2742–95.
Article CAS PubMed Google Scholar
Abad-Álvaro I, Peña-Vázquez E, Bolea E, Bermejo-Barrera P, Castillo JR, Laborda F. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: microsecond vs millisecond dwell times. Anal Bioanal Chem. 2016;408(19):5089–97.
Strenge I, Engelhard C. Capabilities of fast data acquisition with microsecond time resolution in inductively coupled plasma mass spectrometry and identification of signal artifacts from millisecond dwell times during detection of single gold nanoparticles. J Anal At Spectrom. 2016;31(1):135–44.
Fuchs J, Aghaei M, Schachel TD, Sperling M, Bogaerts A, Karst U. Impact of the particle diameter on ion cloud formation from gold nanoparticles in ICPMS. Anal Chem. 2018;90(17):10271–8.
Article CAS PubMed Google Scholar
Montaño MD, Badiei HR, Bazargan S, Ranville JF. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ Sci Nano. 2014;1(4):338–46.
Laborda F, Gimenez-Ingalaturre AC, Bolea E, Castillo JR. About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry. Spectrochim Acta Part B. 2020;169:105883.
Kálomista I, Kéri A, Ungor D, Csapó E, Dékány I, Prohaska T, et al. Dimensional characterization of gold nanorods by combining millisecond and microsecond temporal resolution single particle ICP-MS measurements. J Anal At Spectrom. 2017;32(12):2455–62.
Liu J, Wei X, Wu C, Zheng L, Wang M, Chen M, et al. Data analysis for the characterization of nanoparticles with single particle inductively coupled plasma mass spectrometry: from microsecond to millisecond dwell times. Anal Chim Acta. 2023;1254:341114.
Article CAS PubMed Google Scholar
Laborda F, Abad-Álvaro I, Jiménez MS, Bolea E. Catching particles by atomic spectrometry: benefits and limitations of single particle - inductively coupled plasma mass spectrometry. Spectrochim Acta Part B. 2023;199:106570.
Gundlach-Graham A. Chapter Three - Multiplexed and multi-metal single-particle characterization with ICP-TOFMS. In: Milačič R, Ščančar J, Goenaga-Infante H, Vidmar J, editors. Comprehensive analytical chemistry. 93. Amsterdam: Elsevier; 2021. p. 69–101.
Gundlach-Graham A, Hendriks L, Mehrabi K, Günther D. Monte Carlo simulation of low-count signals in time-of-flight mass spectrometry and its application to single-particle detection. Anal Chem. 2018;90(20):11847–55.
Article CAS PubMed Google Scholar
Hendriks L, Gundlach-Graham A, Günther D. Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model. J Anal At Spectrom. 2019;34(9):1900–9.
Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem. 2012;31(1):115–21.
Article CAS PubMed Google Scholar
Chronakis MI, Mavrakis E, García RÁ-F, Montes-Bayón M, Bettmer J, Pitta P, Tsapakis M, et al. Investigating the behavior of ultratrace levels of nanoparticulate and ionic silver in a seawater mesocosm using single particle inductively coupled plasma – mass spectrometry. Chemosphere. 2023;336:139109.
Article CAS PubMed Google Scholar
von der Au M, Borovinskaya O, Flamigni L, Kuhlmeier K, Büchel C, Meermann B. Single cell-inductively coupled plasma-time of flight-mass spectrometry approach for ecotoxicological testing. Algal Res. 2020;49:101964.
Mozhayeva D, Strenge I, Engelhard C. Implementation of online preconcentration and microsecond time resolution to capillary electrophoresis single particle inductively coupled plasma mass spectrometry (CE-SP-ICP-MS) and its application in silver nanoparticle analysis. Anal Chem. 2017;89(13):7152–9.
Article CAS PubMed Google Scholar
Strenge I, Engelhard C. Single particle inductively coupled plasma mass spectrometry: investigating nonlinear response observed in pulse counting mode and extending the linear dynamic range by compensating for dead time related count losses on a microsecond timescale. J Anal At Spectrom. 2020;35(1):84–99.
Mehrabi K, Günther D, Gundlach-Graham A. Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices. Environ Sci Nano. 2019;6(11):3349–58.
Chronakis MI, von der Au M, Meermann B. Single cell-asymmetrical flow field-flow fractionation/ICP-time of flight-mass spectrometry (sc-AF4/ICP-ToF-MS): an efficient alternative for the cleaning and multielemental analysis of individual cells. J Anal At Spectrom. 2022;37(12):2691–700.
Cornelis G, Hassellöv M. A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS. J Anal At Spectrom. 2014;29(1):134–44.
Cornelis G, Rauch S. Drift correction of the dissolved signal in single particle ICPMS. Anal Bioanal Chem. 2016;408(19):5075–87.
Article CAS PubMed Google Scholar
Lockwood TE, Gonzalez de Vega R, Clases D. An interactive Python-based data processing platform for single particle and single cell ICP-MS. J Analyt Atom Spectrom. 2021;36(11):2536–44.
Gundlach-Graham A, Harycki S, Szakas SE, Taylor TL, Karkee H, Buckman RL, et al. Introducing “Time-of-Flight Single Particle Investigator” (TOF-SPI): a tool for quantitative spICP-TOFMS data analysis. J Anal Atom Spectrom. 2024;39:704–11.
Hellmann S, García-Cancela P, Alonso-Fernández S, Corte-Rodríguez M, Bettmer J, Manteca A, et al. Single cell ICP-MS to evaluate the interaction behaviour for Cd, Ce and U with Streptomyces coelicolor spores. Chemosphere. 2024;347:140633.
Article CAS PubMed Google Scholar
Tharaud M, Gondikas AP, Benedetti MF, von der Kammer F, Hofmann T, Cornelis G. TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. J Anal Atom Spectrom. 2017;32(7):1400–11.
Gonzalez de Vega R, Lockwood TE, Xu X, Gonzalez de Vega C, Scholz J, Horstmann M, et al. Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS. Anal Bioanal Chem. 2022;414(18):5671–81.
Comments (0)