AbdulHameed MDM, Pannala VR, Wallqvist A (2019) Mining public toxicogenomic data reveals insights and challenges in delineating liver steatosis adverse outcome pathways. Front Genet. https://doi.org/10.3389/fgene.2019.01007
Article PubMed PubMed Central Google Scholar
Abe T, Takahashi M, Kano M, Amaike Y, Ishii C, Maeda K, Kudoh Y, Morishita T, Hosaka T, Sasaki T, Kodama S, Matsuzawa A, Kojima H, Yoshinari K (2017) Activation of nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid. Arch Toxicol. https://doi.org/10.1007/s00204-016-1888-3
Alaynick WA (2008) Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion. https://doi.org/10.1016/j.mito.2008.02.001
Article PubMed PubMed Central Google Scholar
al-Eryani L, Wahlang B, Falkner KC, Guardiola JJ, Clair HB, Prough RA, Cave M (2015) Identification of environmental chemicals associated with the development of toxicant-associated fatty liver disease in rodents. Toxicol Pathol. https://doi.org/10.1177/0192623314549960
Almeida NMS, Itcan Eken Y, Wilson AK (2021) Binding of per-and polyfluoro-alkyl substances to peroxisome proliferator-activated receptor gamma. ACS Omega. https://doi.org/10.1021/acsomega.1c01304
Article PubMed PubMed Central Google Scholar
ATSDR (2021) Toxicological Profile for Perfluoroalkyls—Release May 2021. Agency for Toxic Substances and Disease Registry
Azzu V, Vacca M, Kamzolas I, Hall Z, Leslie J, Carobbio S, Virtue S, Davies SE, Lukasik A, Dale M, Bohlooly-Y M, Acharjee A, Lindén D, Bidault G, Petsalaki E, Griffin JL, Oakley F, Allison MED, Vidal-Puig A (2021) Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol Metab. https://doi.org/10.1016/j.molmet.2021.101210
Article PubMed PubMed Central Google Scholar
Becnel LB, Darlington YF, Ochsner SA, Easton-Marks JR, Watkins CM, McOwiti A, Kankanamge WH, Wise MW, DeHart M, Margolis RN, McKenna NJ, Sladek FM (2015) Nuclear receptor signaling atlas: opening access to the biology of nuclear receptor signaling pathways. PLoS ONE. https://doi.org/10.1371/journal.pone.0135615
Article PubMed PubMed Central Google Scholar
Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C, Apte U (2016) The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2016.05.001
Article PubMed PubMed Central Google Scholar
Behr AC, Plinsch C, Braeuning A, Buhrke T (2020a) Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol in Vitro 62:104700. https://doi.org/10.1016/J.TIV.2019.104700
Behr A-C, Kwiatkowski A, Ståhlman M, Schmidt FF, Luckert C, Braeuning A, Buhrke T (2020b) Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells. Arch Toxicol 94(5):1673–1686. https://doi.org/10.1007/s00204-020-02732-3
Article CAS PubMed PubMed Central Google Scholar
Behr A-C, Kwiatkowski A, Stahlman M, Schmidt FF, Luckert C, Braeuning A, Buhrke T (2021) Correction to: Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells (Archives of Toxicology, (2020), 94, 5, (1673–1686), 10.1007/s00204-020-02732-3). Arch Toxicol. https://doi.org/10.1007/s00204-021-03089-x
Article PubMed PubMed Central Google Scholar
Bell TA, Brown JM, Graham MJ, Lemonidis KM, Crooke RM, Rudel LL (2006) Liver-specific inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 with antisense oligonucleotides limits atherosclerosis development in apolipoprotein B100-only low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/01.ATV.0000225289.30767.06
Berthier A, Johanns M, Zummo FP, Lefebvre P, Staels B (2021) PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis. https://doi.org/10.1016/j.bbadis.2021.166097
Bjork JA, Butenhoff JL, Wallace KB (2011) Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 288(1–3):8–17. https://doi.org/10.1016/J.TOX.2011.06.012
Article CAS PubMed Google Scholar
Boiteux V, Bach C, Sagres V, Hemard J, Colin A, Rosin C, Munoz JF, Dauchy X (2016) Analysis of 29 per- and polyfluorinated compounds in water, sediment, soil and sludge by liquid chromatography–tandem mass spectrometry. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2016.1196683
Boiteux V, Dauchy X, Bach C, Colin A, Hemard J, Sagres V, Rosin C, Munoz JF (2017) Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.01.079
Brewer CT, Chen T (2016) PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2016.07.002
Article PubMed PubMed Central Google Scholar
Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm3312
Article PubMed PubMed Central Google Scholar
Castillo HB, Shuster SO, Tarekegn LH, Davis CM (2023) Oleic acid differentially affects de novo lipogenesis in adipocytes and hepatocytes. BioRxiv. 2023.10.04.560581. https://doi.org/10.1101/2023.10.04.560581
Chang CJ, Ryan PB, Smarr MM, Kannan K, Panuwet P, Dunlop AL, Corwin EJ, Barr DB (2021) Serum per- and polyfluoroalkyl substance (PFAS) concentrations and predictors of exposure among pregnant African American women in the Atlanta area, Georgia. Environ Res. https://doi.org/10.1016/j.envres.2020.110445
Article PubMed PubMed Central Google Scholar
Chen M, Qiang L, Pan X, Fang S, Han Y, Zhu L (2015) In Vivo and in vitro isomer-specific biotransformation of perfluorooctane sulfonamide in common carp (Cyprinus carpio). Environ Sci Technol 49(23):13817–13824. https://doi.org/10.1021/acs.est.5b00488
Article CAS PubMed Google Scholar
Chen H, Qiu W, Yang X, Chen F, Chen J, Tang L, Zhong H, Magnuson JT, Zheng C, Xu EG (2022) Perfluorooctane sulfonamide (PFOSA) induces cardiotoxicity via aryl hydrocarbon receptor activation in zebrafish. Environ Sci Technol. https://doi.org/10.1021/acs.est.1c08875
Article PubMed PubMed Central Google Scholar
Chow SJ, Ojeda N, Jacangelo JG, Schwab KJ (2021) Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in US bottled water. Water Res. https://doi.org/10.1016/j.watres.2021.117292
Claudel T, Zollner G, Wagner M, Trauner M (2011) Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1812(8):867–878. https://doi.org/10.1016/J.BBADIS.2010.12.021
D’Eon JC, Mabury SA (2011) Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ Sci Technol. https://doi.org/10.1021/es200171y
Dasgupta S, Reddam A, Liu Z, Liu J, Volz DC (2020) High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113550
DeWitt JC (2015) Toxicological effects of perfluoroalkyl and polyfluoroalkyl substances (NV-1 o). Humana Press. https://doi.org/10.1007/978-3-319-15518-0. https://vu.on.worldcat.org/oclc/907641019
Dewitt JC, Peden-Adams MM, Keller JM, Germolec DR (2012) Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol. https://doi.org/10.1177/0192623311428473
Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC (2009) Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch Toxicol. https://doi.org/10.1007/s00204-009-0424-0
EFSA (2018) Minutes of the expert meeting on perfluooroctane sulfonic acid and perfluorooctanoic acid in food assessment. EFSA/CONTAM/3503, vol 178, pp 1–24. https://www.efsa.europa.eu/sites/default/files/news/efsa-contam-3503.pdf
Comments (0)