Najjar R (2023) Redefining radiology: a review of artificial intelligence integration in medical imaging. Diagnostics (Basel) 13:2760. https://doi.org/10.3390/diagnostics13172760
Gitto S, Cuocolo R, Albano D, Morelli F, Pescatori LC, Messina C, Imbriaco M, Sconfienza LM (2021) CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies. Insights Imaging 12:68. https://doi.org/10.1186/s13244-021-01008-3
Article PubMed PubMed Central Google Scholar
Gitto S, Cuocolo R, Huisman M, Messina C, Albano D, Omoumi P, Kotter E, Maas M, Van Ooijen P, Sconfienza LM (2024) CT and MRI radiomics of bone and soft-tissue sarcomas: an updated systematic review of reproducibility and validation strategies. Insights Imaging 15:54. https://doi.org/10.1186/s13244-024-01614-x
Article PubMed PubMed Central Google Scholar
Wagner MW, Namdar K, Biswas A, Monah S, Khalvati F, Ertl-Wagner BB (2021) Radiomics, machine learning, and artificial intelligence-what the neuroradiologist needs to know. Neuroradiology 63:1957–1967. https://doi.org/10.1007/s00234-021-02813-9
Article PubMed PubMed Central Google Scholar
Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515. https://doi.org/10.1148/rg.2017160130
McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad Radiol 25:1472–1480. https://doi.org/10.1016/j.acra.2018.02.018
Patil P, Dasgupta B (2012) Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Ther Adv Musculoskelet Dis 4:341–355. https://doi.org/10.1177/1759720X12442112
Article PubMed PubMed Central Google Scholar
Henderson REA, Walker BF, Young KJ (2015) The accuracy of diagnostic ultrasound imaging for musculoskeletal soft tissue pathology of the extremities: a comprehensive review of the literature. Chiropr Man Therap 23:31. https://doi.org/10.1186/s12998-015-0076-5
Article PubMed PubMed Central Google Scholar
Albano D, Basile M, Gitto S, Messina C, Longo S, Fusco S, Snoj Z, Gianola S, Bargeri S, Castellini G, Sconfienza LM (2024) Shear-wave elastography for the evaluation of tendinopathies: a systematic review and meta-analysis. Radiol Med 129:107–117. https://doi.org/10.1007/s11547-023-01732-4
Gitto S, Albano D, Serpi F, Spadafora P, Colombo R, Messina C, Aliprandi A, Sconfienza LM (2024) Diagnostic performance of high-resolution ultrasound in the evaluation of intrinsic and extrinsic wrist ligaments after trauma. Ultraschall Med 45:54–60. https://doi.org/10.1055/a-2066-9230
Tenajas R, Miraut D, Illana CI, Alonso-Gonzalez R, Arias-Valcayo F, Herraiz JL (2023) Recent advances in artificial intelligence-assisted ultrasound scanning. Appl Sci (Basel) 13:3693. https://doi.org/10.3390/app13063693
Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, Erickson BJ (2019) A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J Am Coll Radiol 16:1318–1328. https://doi.org/10.1016/j.jacr.2019.06.004
Yi J, Kang HK, Kwon JH, Kim KS, Park MH, Seong YK, Kim DW, Ahn B, Ha K, Lee J, Hah Z, Bang WC (2021) Technology trends and applications of deep learning in ultrasonography: image quality enhancement, diagnostic support, and improving workflow efficiency. Ultrasonography 40:7–22. https://doi.org/10.14366/usg.20102
Shin Y, Yang J, Lee YH, Kim S (2021) Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography 40:30–44. https://doi.org/10.14366/usg.20080
Gitto S, Serpi F, Albano D, Risoleo G, Fusco S, Messina C, Sconfienza LM (2024) AI applications in musculoskeletal imaging: a narrative review. Eur Radiol Exp 8:22. https://doi.org/10.1186/s41747-024-00422-8
Article PubMed PubMed Central Google Scholar
Getzmann JM, Kaniewska M, Rothenfluh E, Borowka S, Guggenberger R (2021) Comparison of AI-powered 3D automated ultrasound tomography with standard handheld ultrasound for the visualization of the hands-clinical proof of concept. Skeletal Radiol 51:1415–1423. https://doi.org/10.1007/s00256-021-03984-5
Maleki F, Ovens K, Gupta R, Reinhold C, Spatz A, Forghani R (2022) Generalizability of machine learning models: quantitative evaluation of three methodological pitfalls. Radiol Artif Intell 5:e220028. https://doi.org/10.1148/ryai.220028
Article PubMed PubMed Central Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71
Article PubMed PubMed Central Google Scholar
Cheng Y, Jin Z, Zhou X, Zhang W, Zhao D, Tao C, Yuan J (2022) Diagnosis of metacarpophalangeal synovitis with musculoskeletal ultrasound images. Ultrasound Med Biol 48:488–496. https://doi.org/10.1016/j.ultrasmedbio.2021.11.003
Chiu PH, Boudier-Revéret M, Chang SW, Wu CH, Chen WS, Özçakar L (2022) Deep learning for detecting supraspinatus calcific tendinopathy on ultrasound images. J Med Ultrasound 30:196–202. https://doi.org/10.4103/jmu.jmu_182_21
Article PubMed PubMed Central Google Scholar
Cronin NJ, Finni T, Seynnes O (2020) Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. Comput Methods Programs Biomed 196:105583. https://doi.org/10.1016/j.cmpb.2020.105583
Cunningham RJ, Loram ID (2020) Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks. J R Soc Interface 17:20190715. https://doi.org/10.1098/rsif.2019.0715
Article PubMed PubMed Central Google Scholar
Di Cosmo M, Fiorentino MC, Villani FP, Frontoni E, Smerilli G, Filippucci E, Moccia S (2022) A deep learning approach to median nerve evaluation in ultrasound images of carpal tunnel inlet. Med Biol Eng Comput 60:3255–3264. https://doi.org/10.1007/s11517-022-02662-5
Article PubMed PubMed Central Google Scholar
Smerilli G, Cipolletta E, Sartini G, Moscioni E, Di Cosmo M, Fiorentino MC, Moccia S, Frontoni E, Grassi W, Filippucci E (2022) Development of a convolutional neural network for the identification and the measurement of the median nerve on ultrasound images acquired at carpal tunnel level. Arthritis Res Ther 24:38. https://doi.org/10.1186/s13075-022-02729-6
Article PubMed PubMed Central Google Scholar
Droppelmann G, Tello M, García N, Greene C, Jorquera C, Feijoo F (2022) Lateral elbow tendinopathy and artificial intelligence: binary and multilabel findings detection using machine learning algorithms. Front Med (Lausanne) 9:945698. https://doi.org/10.3389/fmed.2022.945698
Du Toit C, Orlando N, Papernick S, Dima R, Gyacskov I, Fenster A (2022) Automatic femoral articular cartilage segmentation using deep learning in three-dimensional ultrasound images of the knee. Osteoarthr Cartil Open 4:100290. https://doi.org/10.1016/j.ocarto.2022.100290
Article PubMed PubMed Central Google Scholar
Lee SW, Ye HU, Lee KJ, Jang WY, Lee JH, Hwang SM, Heo YR (2021) Accuracy of new deep learning model-based segmentation and key-point multi-detection method for ultrasonographic developmental dysplasia of the hip (DDH) screening. Diagnostics (Basel) 11:1174. https://doi.org/10.3390/diagnostics11071174
Lin BS, Chen JL, Tu YH, Shih YX, Lin YC, Chi WL, Wu YC (2020) Using deep learning in ultrasound imaging of bicipital peritendinous effusion to grade inflammation severity. IEEE J Biomed Health Inform 24:1037–1045. https://doi.org/10.1109/JBHI.2020.2968815
Comments (0)