Oxysophocarpine attenuates inflammatory osteolysis by modulating the NF-κb pathway and the reactive oxygen species-related Nrf2 signaling pathway

Andreev D, Liu M, Weidner D et al (2020) Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. J Clin Invest 130:4811–4830. https://doi.org/10.1172/JCI134214

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264. https://doi.org/10.1016/j.bone.2006.09.023

Article  CAS  PubMed  Google Scholar 

Boyce BF (2013) Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 92:860–867. https://doi.org/10.1177/0022034513500306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658

Article  CAS  PubMed  Google Scholar 

Braun S, Sonntag R, Schroeder S et al (2019) Backside wear in acetabular hip joint replacement. Acta Biomater 83:467–476. https://doi.org/10.1016/j.actbio.2018.10.045

Article  PubMed  Google Scholar 

Chen K, Qiu P, Yuan Y et al (2019) Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics 9:1634–1650. https://doi.org/10.7150/thno.30206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen D, Wang Q, Li Y et al (2021a) Notopterol attenuates estrogen deficiency-induced osteoporosis via repressing RANKL signaling and reactive oxygen species. Front Pharmacol 12

Chen X, Zhu X, Wei A et al (2021b) Nrf2 epigenetic derepression induced by running exercise protects against osteoporosis. Bone Res 9:15. https://doi.org/10.1038/s41413-020-00128-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Cao X, Zheng D et al (2023) Ultrasmall PtAu2 nanoclusters activate endogenous anti-inflammatory and anti-oxidative systems to prevent inflammatory osteolysis. Theranostics 13:1010–1027. https://doi.org/10.7150/thno.80514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delgado-Calle J, Bellido T (2022) The osteocyte as a signaling cell. Physiol Rev 102:379–410. https://doi.org/10.1152/physrev.00043.2020

Article  CAS  PubMed  Google Scholar 

Doi K, Murata K, Ito S et al (2022) Role of lysine-specific demethylase 1 in metabolically integrating osteoclast differentiation and inflammatory bone resorption through hypoxia-inducible factor 1α and E2F1. Arthritis Rheumatol 74:948–960. https://doi.org/10.1002/art.42074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruber R (2019) Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 46(Suppl 21):52–69. https://doi.org/10.1111/jcpe.13056

Article  PubMed  Google Scholar 

Huang Q, Lan F, Wang X et al (2014) IL-1β-induced activation of p38 promotes metastasis in gastric adenocarcinoma via upregulation of AP-1/c-fos, MMP2 and MMP9. Mol Cancer 13:18. https://doi.org/10.1186/1476-4598-13-18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Josse J, Guillaume C, Bour C et al (2016) Impact of the maturation of human primary bone-forming cells on their behavior in acute or persistent staphylococcus aureus infection models. Front Cell Infect Microbiol 6:64. https://doi.org/10.3389/fcimb.2016.00064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasai S, Shimizu S, Tatara Y et al (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10:320. https://doi.org/10.3390/biom10020320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee NK, Choi YG, Baik JY et al (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859. https://doi.org/10.1182/blood-2004-09-3662

Article  CAS  PubMed  Google Scholar 

Li J, Liu L, Rui W et al (2017) New interleukins in psoriasis and psoriatic arthritis patients: the possible roles of interleukin-33 to interleukin-38 in disease activities and bone erosions. Dermatology 233:37–46. https://doi.org/10.1159/000471798

Article  CAS  PubMed  Google Scholar 

Li L, Shi R, Shi W et al (2020) Oxysophocarpine protects airway epithelial cells against inflammation and apoptosis by inhibiting miR-155 expression. Future Med Chem 12:1475–1487. https://doi.org/10.4155/fmc-2020-0120

Article  CAS  PubMed  Google Scholar 

Li Y, Zhuang Q, Tao L et al (2022) Urolithin B suppressed osteoclast activation and reduced bone loss of osteoporosis via inhibiting ERK/NF-κB pathway. Cell Prolif 55:e13291. https://doi.org/10.1111/cpr.13291

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin S, Wen Z, Li S et al (2022) LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis. Acta Biomater 142:345–360. https://doi.org/10.1016/j.actbio.2022.02.007

Article  CAS  PubMed  Google Scholar 

Mittal M, Siddiqui MR, Tran K et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167. https://doi.org/10.1089/ars.2012.5149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakashima T, Hayashi M, Fukunaga T et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234. https://doi.org/10.1038/nm.2452

Article  CAS  PubMed  Google Scholar 

Negishi-Koga T, Takayanagi H (2009) Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 231:241–256. https://doi.org/10.1111/j.1600-065X.2009.00821.x

Article  CAS  PubMed  Google Scholar 

Park-Min K-H (2019) Metabolic reprogramming in osteoclasts. Semin Immunopathol 41:565–572. https://doi.org/10.1007/s00281-019-00757-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pereira M, Petretto E, Gordon S et al (2018) Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci 131:jcs216267. https://doi.org/10.1242/jcs.216267

Qu H, Zhang Y, He R et al (2021) Anethole inhibits RANKL-induced osteoclastogenesis by downregulating ERK/AKT signaling and prevents ovariectomy-induced bone loss in vivo. Int Immunopharmacol 100:108113. https://doi.org/10.1016/j.intimp.2021.108113

Article  CAS  PubMed  Google Scholar 

Redlich K, Smolen JS (2012) Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 11:234–250. https://doi.org/10.1038/nrd3669

Article  CAS  PubMed  Google Scholar 

Sun X, Xie Z, Hu B et al (2020a) The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol 28:101309. https://doi.org/10.1016/j.redox.2019.101309

Article  CAS  PubMed  Google Scholar 

Sun Z, Zeng J, Wang W et al (2020b) Magnoflorine suppresses MAPK and NF-κB signaling to prevent inflammatory osteolysis induced by titanium particles in vivo and osteoclastogenesis via RANKL in vitro. Front Pharmacol 11:389. https://doi.org/10.3389/fphar.2020.00389

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif