Abdel-Sattar E, Mahrous EA, Thabet MM et al (2021) Methanolic extracts of a selected Egyptian Vicia faba cultivar mitigate the oxidative/inflammatory burden and afford neuroprotection in a mouse model of Parkinson’s disease. Inflammopharmacology 291:221–235. https://doi.org/10.1016/j.neurobiolaging.2008.11.001
Ahmed S, El-Sayed MM, Kandeil MA et al (2022) Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α-synuclein and Parkin levels in rotenone-induced Parkinson’s disease in rats. Saudi Pharm J 306:863–873. https://doi.org/10.1016/j.jsps.2022.03.005
Alghamdi AM, Al-Abbasi FA, AlGhamdi SA et al (2023) Rosinidin inhibits NF-κB/Nrf2/caspase-3 expression and restores neurotransmitter levels in rotenone-activated Parkinson’s disease. Saudi J Biol Sci 306:103656. https://doi.org/10.1016/j.sjbs.2023.103656
Alharthy KM, Althurwi HN, Albaqami FF et al (2023) barbigerone potentially alleviates rotenone-activated Parkinson’s disease in a rodent model by reducing oxidative stress and neuroinflammatory cytokines. ACS Omega 85:4608–4615. https://doi.org/10.1021/acsomega.2c05837
Al-Wandi A, Ninkina N, Millership S et al (2010) Absence of α-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiol Aging 315:796–804. https://doi.org/10.1016/j.neurobiolaging.2008.11.001
Alzarea SI, Afzal M, Alharbi KS et al (2022) Hibiscetin attenuates oxidative, nitrative stress and neuroinflammation via suppression of TNF-? signaling in rotenone induced parkinsonism in rats. Saudi Pharm J 3012:1710–1717. https://doi.org/10.1016/j.jsps.2022.09.016
Aoyama K (2021) Glutathione in the brain. Int J Mol Sci 229:5010. https://doi.org/10.3390/ijms22095010
Aziz Q, Ruffle JK (2018) The neurobiology of gut feelings. In: Manos T and Helena DP (eds) The Interoceptive Mind: From Homeostasis to Awareness (Oxford, 2018; online edn, Oxford Academic, 22 Nov. 2018), https://doi.org/10.1093/oso/9780198811930.003.0005
Bach Knudsen KE, Lærke HN, Hedemann MS et al (2018) Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 1010:1499. https://doi.org/10.3390/nu10101499
Bai XL, Luo YJ, Fan WQ et al (2023) Neuroprotective effects of Lycium barbarum fruit extract on pink 1 (B9) Drosophila melanogaster genetic model of Parkinson’s disease. Plant Foods Hum Nutr 78(1):68–75. https://doi.org/10.1007/s11130-022-01016-8
Article CAS PubMed Google Scholar
Baizabal-Carvallo JF, Alonso-Juarez M (2020) The link between gut dysbiosis and neuroinflammation in Parkinson’s disease. Neuroscience 432:160–173
Article CAS PubMed Google Scholar
Benskey MJ, Perez RG, Manfredsson FP (2016) The contribution of alpha synuclein to neuronal survival and function—implications for Parkinson’s disease. J Neurochem 1373:331–359. https://doi.org/10.1111/jnc.13570
Bhratee A, Kumar M, Alam MR et al (2023) Understanding Alzheimer’s disease by targeting gut microbiota and role of heavy metals: insight from novel therapeutical approach. Curr Pharmacol Rep. https://doi.org/10.1007/s40495-023-00325-z
Bisht R, Joshi BC, Kalia AN et al (2017) Antioxidant-rich fraction of Urtica dioica mediated rescue of striatal mito-oxidative damage in MPTP-induced behavioral, cellular, and neurochemical alterations in rats. Mol Neurobiol 54:5632–5645. https://doi.org/10.1007/s12035-016-0084-z
Article CAS PubMed Google Scholar
Brandes RP, Weissmann N, Schröder K (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76:208–226. https://doi.org/10.1016/j.freeradbiomed.2014.07.046
Article CAS PubMed Google Scholar
Butler B, Sambo D, Khoshbouei H (2017) Alpha-synuclein modulates dopamine neurotransmission. J Chem Neuroanat 83:41–49
Campolo M, Casili G, Biundo F et al (2017) The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal 278:453–471. https://doi.org/10.1089/ars.2016.6800
Chandra R, Hiniker A, Kuo Y-M et al (2017) α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight. https://doi.org/10.1172/jci.insight.92295
Article PubMed PubMed Central Google Scholar
Chang HC, Liu KF, Teng CJ et al (2019) Sophora tomentosa extract prevents MPTP-induced Parkinsonism in C57BL/6 mice via the inhibition of GSK-3 phosphorylation and oxidative stress. Nutrients. https://doi.org/10.3390/nu11020252
Article PubMed PubMed Central Google Scholar
Chen TJ, Feng Y, Liu T et al (2020) Fisetin regulates gut microbiota and exerts neuroprotective effect on mouse model of Parkinson’s disease. Front Neurosci 14:549037. https://doi.org/10.3389/fnins.2020.549037
Article PubMed PubMed Central Google Scholar
Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W et al (2018) The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med 181:103. https://doi.org/10.1186/s12906-018-2166-0
Chu C, Li T, Yu L et al (2023a) A low-protein, high-carbohydrate diet exerts a neuroprotective effect on mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease by regulating the microbiota-metabolite-brain axis and fibroblast growth factor 21. J Agric Food Chem 7123:8877–8893. https://doi.org/10.1021/acs.jafc.2c07606
Chu C, Yu L, Li Y et al (2023b) Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson’s disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis. Nutrients 157:1737. https://doi.org/10.3390/nu15071737
Cilia R, Ko JH, Cho SS et al (2010) Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiol Dis 391:98–104. https://doi.org/10.1016/j.nbd.2010.03.013
ClinicalTrials.gov. National Library of Medicine. https://clinicaltrials.gov/.
Devos D, Lebouvier T, Lardeux B et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. https://doi.org/10.1016/j.nbd.2012.09.007
Article CAS PubMed Google Scholar
Dong XL, Wang X, Liu F et al (2020) Polymannuronic acid prevents dopaminergic neuronal loss via brain–gut–microbiota axis in Parkinson’s disease model. Int J Biol Macromol 164:994–1005. https://doi.org/10.1016/j.ijbiomac.2020.07.180
Article CAS PubMed Google Scholar
Du Y, Gao X-R, Peng L et al (2020) Crosstalk between the microbiota–gut–brain axis and depression. Heliyon 66:e04097. https://doi.org/10.1016/j.heliyon.2020.e04097
Dunnill C, Patton T, Brennan J et al (2017) Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 141:89–96. https://doi.org/10.1111/iwj.12557
Elgayar SAM, Hussein OA, Mubarak HA et al (2022) Testing efficacy of the nicotine protection of the substantia nigra pars compacta in a rat Parkinson disease model. Ultrastructure study. Ultrastruct Pathol 461:37–53. https://doi.org/10.1080/01913123.2021.2015499
El-Sayed RM, Abdelaziz AM, Zaki HF et al (2023) Cilostazol novel neuroprotective mechanism against rotenone-induced Parkinson’s disease in rats: correlation between Nrf2 and HMGB1/TLR4/PI3K/Akt/mTOR signaling. Int Immunopharmacol 117:109986. https://doi.org/10.1016/j.intimp.2023.109986
Article CAS PubMed Google Scholar
Forsyth CB, Shannon KM, Kordower JH et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 612:e28032. https://doi.org/10.1371/journal.pone.0028032
Comments (0)