Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–249
Yao L, Xia Y, Zhang H, Yao J, Jin D, Qiu B, Zhang Y, Li S, Liang Y, Hua XS, Lu L, Chen X, Liu Z, Zhang L (2022) DeepCRC: colorectum and colorectal cancer segmentation in CT scans via deep colorectal coordinate transform. In: International conference on medical image computing and computer-assisted intervention. Springer Nature, Switzerland, pp 564–573
Mainenti PP, Stanzione A, Guarino S, Romeo V, Ugga L, Romano F, Storto G, Maurea S, Brunetti A (2019) Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging. World J Gastroenterol 25(35):5233
Article CAS PubMed PubMed Central Google Scholar
Ahmad HM, Khan MJ, Yousaf A, Ghuffar S, Khurshid K (2020) Deep learning: a breakthrough in medical imaging. Curr Med Imaging 16(8):946–956
Antonelli M, Reinke A, Bakas S, Farahani K, Kopp-Schneider A, Landman BA, Litjens G, Menze B, Ronneberger O, Summers RM, van Ginneken B, Bilello M, Bilic P, Christ PF, Do RKG, Gollub MJ, Heckers SH, Huisman H, Jarnagin WR, McHugo MK et al (2022) The medical segmentation decathlon. Nat Commun 13(1):4128
Article CAS PubMed PubMed Central Google Scholar
Jia X, Mai X, Cui Y, Yuan Y, Xing X, Seo H, Xing L, Meng MQH (2020) Automatic polyp recognition in colonoscopy images using deep learning and two-stage pyramidal feature prediction. IEEE Trans Autom Sci Eng 17(3):1570–1584
Duc NT, Oanh NT, Thuy NT, Triet TM, Dinh VS (2022) Colonformer: an efficient transformer-based method for colon polyp segmentation. IEEE Access 10:80575–80586
Sui D, Zhang K, Liu W, Chen J, Ma X, Tian Z (2021) CST: A multitask learning framework for colorectal cancer region mining based on transformer. BioMed Res Int 2021:6207964
Article PubMed PubMed Central Google Scholar
Soomro MH, De Cola G, Conforto S, Schmid M, Giunta G, Guidi E, Neri E, Caruso D, Ciolina M, Laghi A (2018) Automatic segmentation of colorectal cancer in 3D MRI by combining deep learning and 3D level-set algorithm—a preliminary study. In: IEEE middle east conference on biomedical engineering (MECBME), pp 198–203
Pei Y, Mu L, Fu Y, He K, Li H, Guo S, Liu X, Li M, Zhang H, Li X (2020) Colorectal tumor segmentation of CT scans based on a convolutional neural network with an attention mechanism. IEEE Access 8:64131–64138
Tang Y, Yang D, Li W, Roth HR, Landman B, Xu D, Nath V, Hatamizadeh A (2022) Self-supervised pre-training of swin transformers for 3d medical image analysis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 20730–20740
Zhang R, Bai Z, Yu R, Pang W, Wang L, Zhu L, Zhang X, Zhang H, Hu W (2023) AG-CRC: anatomy-guided colorectal cancer segmentation in CT with imperfect anatomical knowledge. arXiv preprint arXiv:2310.04677
Liu X, Guo S, Zhang H, He K, Mu S, Guo Y, Li X (2019) Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network. Med Phys 46(8):3532–3542
Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211
Article CAS PubMed Google Scholar
Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, Roth HR, Xu D (2022) UNETR: Transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 574–584
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, 2015, proceedings, Part III 18. Springer International Publishing, pp 234–241
Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D (2021) Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. International MICCAI Brainlesion Workshop. Springer International Publishing, Cham, pp 272–284
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10012–10022
Peiris H, Hayat M, Chen Z, Egan G, Harandi M (2022) A robust volumetric transformer for accurate 3D tumor segmentation. In: international conference on medical image computing and computer-assisted intervention. Springer Nature, Switzerland, pp 162–172
Zhou HY, Guo J, Zhang Y, Han X, Yu L, Wang L, Yu Y (2023) nnformer: Volumetric medical image segmentation via a 3D transformer. In: IEEE transactions on image processing
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Zhou Y (2021) Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306
Chen J, Mei J, Li X, Lu Y, Yu Q, Wei Q, Zhou Y (2023) 3D transunet: advancing medical image segmentation through vision transformers. arXiv preprint arXiv:2310.07781
Wu Y, Liao K, Chen J, Wang J, Chen DZ, Gao H, Wu J (2023) D-former: a U-shaped dilated transformer for 3d medical image segmentation. Neural Comput Appl 35(2):1931–1944
Tummala P, Hille G, Saalfeld S (2023) Automatic lung nodule segmentation in CT imaging using an improved 3D-Res2Unet. BVM Workshop. Springer Fachmedien Wiesbaden, Wiesbaden, pp 165–170
Hille G, Agrawal S, Tummala P, Wybranski C, Pech M, Surov A, Saalfeld S (2023) Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers. Comput Methods Programs Biomed 240:107647
Comments (0)