Transformers for colorectal cancer segmentation in CT imaging

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–249

PubMed  Google Scholar 

Yao L, Xia Y, Zhang H, Yao J, Jin D, Qiu B, Zhang Y, Li S, Liang Y, Hua XS, Lu L, Chen X, Liu Z, Zhang L (2022) DeepCRC: colorectum and colorectal cancer segmentation in CT scans via deep colorectal coordinate transform. In: International conference on medical image computing and computer-assisted intervention. Springer Nature, Switzerland, pp 564–573

Mainenti PP, Stanzione A, Guarino S, Romeo V, Ugga L, Romano F, Storto G, Maurea S, Brunetti A (2019) Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging. World J Gastroenterol 25(35):5233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad HM, Khan MJ, Yousaf A, Ghuffar S, Khurshid K (2020) Deep learning: a breakthrough in medical imaging. Curr Med Imaging 16(8):946–956

Article  PubMed  Google Scholar 

Antonelli M, Reinke A, Bakas S, Farahani K, Kopp-Schneider A, Landman BA, Litjens G, Menze B, Ronneberger O, Summers RM, van Ginneken B, Bilello M, Bilic P, Christ PF, Do RKG, Gollub MJ, Heckers SH, Huisman H, Jarnagin WR, McHugo MK et al (2022) The medical segmentation decathlon. Nat Commun 13(1):4128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia X, Mai X, Cui Y, Yuan Y, Xing X, Seo H, Xing L, Meng MQH (2020) Automatic polyp recognition in colonoscopy images using deep learning and two-stage pyramidal feature prediction. IEEE Trans Autom Sci Eng 17(3):1570–1584

Google Scholar 

Duc NT, Oanh NT, Thuy NT, Triet TM, Dinh VS (2022) Colonformer: an efficient transformer-based method for colon polyp segmentation. IEEE Access 10:80575–80586

Article  Google Scholar 

Sui D, Zhang K, Liu W, Chen J, Ma X, Tian Z (2021) CST: A multitask learning framework for colorectal cancer region mining based on transformer. BioMed Res Int 2021:6207964

Article  PubMed  PubMed Central  Google Scholar 

Soomro MH, De Cola G, Conforto S, Schmid M, Giunta G, Guidi E, Neri E, Caruso D, Ciolina M, Laghi A (2018) Automatic segmentation of colorectal cancer in 3D MRI by combining deep learning and 3D level-set algorithm—a preliminary study. In: IEEE middle east conference on biomedical engineering (MECBME), pp 198–203

Pei Y, Mu L, Fu Y, He K, Li H, Guo S, Liu X, Li M, Zhang H, Li X (2020) Colorectal tumor segmentation of CT scans based on a convolutional neural network with an attention mechanism. IEEE Access 8:64131–64138

Article  Google Scholar 

Tang Y, Yang D, Li W, Roth HR, Landman B, Xu D, Nath V, Hatamizadeh A (2022) Self-supervised pre-training of swin transformers for 3d medical image analysis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 20730–20740

Zhang R, Bai Z, Yu R, Pang W, Wang L, Zhu L, Zhang X, Zhang H, Hu W (2023) AG-CRC: anatomy-guided colorectal cancer segmentation in CT with imperfect anatomical knowledge. arXiv preprint arXiv:2310.04677

Liu X, Guo S, Zhang H, He K, Mu S, Guo Y, Li X (2019) Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network. Med Phys 46(8):3532–3542

Article  PubMed  Google Scholar 

Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211

Article  CAS  PubMed  Google Scholar 

Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, Roth HR, Xu D (2022) UNETR: Transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 574–584

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, 2015, proceedings, Part III 18. Springer International Publishing, pp 234–241

Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D (2021) Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. International MICCAI Brainlesion Workshop. Springer International Publishing, Cham, pp 272–284

Google Scholar 

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10012–10022

Peiris H, Hayat M, Chen Z, Egan G, Harandi M (2022) A robust volumetric transformer for accurate 3D tumor segmentation. In: international conference on medical image computing and computer-assisted intervention. Springer Nature, Switzerland, pp 162–172

Zhou HY, Guo J, Zhang Y, Han X, Yu L, Wang L, Yu Y (2023) nnformer: Volumetric medical image segmentation via a 3D transformer. In: IEEE transactions on image processing

Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Zhou Y (2021) Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306

Chen J, Mei J, Li X, Lu Y, Yu Q, Wei Q, Zhou Y (2023) 3D transunet: advancing medical image segmentation through vision transformers. arXiv preprint arXiv:2310.07781

Wu Y, Liao K, Chen J, Wang J, Chen DZ, Gao H, Wu J (2023) D-former: a U-shaped dilated transformer for 3d medical image segmentation. Neural Comput Appl 35(2):1931–1944

Article  Google Scholar 

Tummala P, Hille G, Saalfeld S (2023) Automatic lung nodule segmentation in CT imaging using an improved 3D-Res2Unet. BVM Workshop. Springer Fachmedien Wiesbaden, Wiesbaden, pp 165–170

Google Scholar 

Hille G, Agrawal S, Tummala P, Wybranski C, Pech M, Surov A, Saalfeld S (2023) Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers. Comput Methods Programs Biomed 240:107647

Article  PubMed  Google Scholar 

Comments (0)

No login
gif