Beserra FP, Vieira AJ, Gushiken LFS, Souza EO, Hussni MF, Hussni CA, Nóbrega RH, Martinez ERM, Jackson CJ, Maia GLA, Rozza AL, Pellizzon CH (2019) Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis. Oxid Med Cell Longev 2019:e3182627. https://doi.org/10.1155/2019/3182627
Botta B, Delle Monache F, Delle Monache G, MariniBettolo GB, Oguakwa JU (1983) 3-Geranyloxy-6-methyl-1,8-dihydroxyanthraquinone and vismiones C, D and E from Psorospermum febrifugum. Phytochemistry 22:539–542. https://doi.org/10.1016/0031-9422(83)83041-6
Chunhakant S, Chaicharoenpong C (2019) Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. bark. Mol Basel Switz 24:2798. https://doi.org/10.3390/molecules24152798
Cohen PA, Neil Towers GH (1995) The anthraquinones of Heterodermia obscurata. Phytochemistry 40:911–915. https://doi.org/10.1016/0031-9422(95)00407-X
Costa EF, Magalhães WV, Di Stasi LC (2022) Recent advances in herbal-derived products with skin anti-aging properties and cosmetic applications. Molecules 27:7518. https://doi.org/10.3390/molecules27217518
Article PubMed PubMed Central CAS Google Scholar
Cruz AM, Gonçalves MC, Marques MS, Veiga F, Paiva-Aantos AC, Pires PC (2023) In vitro models for anti-aging efficacy assessment: a critical update in dermocosmetic research. Cosmetics 10:66. https://doi.org/10.3390/cosmetics10020066
Dos Santos BM, Ferreira GM, Tavares MT, De Bona JC, Hirata MH, De Paula VF, Saturnino KC, Soares AM, Mendes MM (2021) Antiophidic activity of the secondary metabolite lupeol isolated from Zanthoxylum monogynum. Toxicon off J Int Soc Toxinology 193:38–47. https://doi.org/10.1016/j.toxicon.2021.01.018
El Aissouq A, Chedadi O, Bouachrine M, Ouammou A (2021) Identification of novel SARS-CoV-2 inhibitors: a structure-based virtual screening approach. J Chem 2021:e1901484. https://doi.org/10.1155/2021/1901484
Elgamal AM, Raey MAE, Gaara A, Abdelfattah MAO, Sobeh M (2021) Phytochemical profiling and anti-aging activities of Euphorbia retusa extract: in silico and in vitro studies. Arab J Chem. https://doi.org/10.1016/j.arabjc.2021.103159
Epifano F, Fiorito S, Genovese S (2013) Phytochemistry and pharmacognosy of the genus Psorospermum. Phytochem Rev 12:673–684. https://doi.org/10.1007/s11101-013-9274-8
Heinz A (2020) Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol 55:252–273. https://doi.org/10.1080/10409238.2020.1768208
Article PubMed CAS Google Scholar
Kashif M, Akhtar N, Mustafa R (2017) An overview of dermatological and cosmeceutical benefits of Diospyros kaki and its phytoconstituents. Rev Bras Farmacogn 27:650–662. https://doi.org/10.1016/j.bjp.2017.06.004
Kumar JP, Mandal BB (2019) The inhibitory effect of silk sericin against ultraviolet-induced melanogenesis and its potential use in cosmeceutics as an anti-hyperpigmentation compound. Photochem Photobiol Sci 18:2497–2508. https://doi.org/10.1039/c9pp00059c
Article PubMed CAS Google Scholar
Lee KK, Choi JD (1999) The effects of Areca catechu L. extract on anti-aging. Int J Cosmet Sci 21:285–295. https://doi.org/10.1046/j.1467-2494.1999.196563.x
Article PubMed CAS Google Scholar
Lin T-K, Zhong L, Santiago J (2017) Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci 19:70. https://doi.org/10.3390/ijms19010070
Article PubMed PubMed Central CAS Google Scholar
Malinowska MA, Sikora E, Stalińska J, Ogonowski J, Drukała J (2021) The effect of the new lupeol derivatives on human skin cells as potential agents in the treatment of wound healing. Biomolecules 11:774. https://doi.org/10.3390/biom11060774
Article PubMed PubMed Central CAS Google Scholar
Manjia J, Njayou NF, Joshi A, Upadhyay K, Shirsath K, Devkar VR, Moundipa FP (2019) The anti-aging potential of medicinal plants in Cameroon - Harungana madagascariensis Lam. and Psorospermum aurantiacum Engl. prevent in vitro ultraviolet B light-induced skin damage. Eur J Integr Med 29:100925. https://doi.org/10.1016/j.eujim.2019.05.011
Manosroi A, Jantrawut P, Akihisa T, Manosroi W, Manosroi J (2010) In vitro anti-aging activities of Terminalia chebula gall extract. Pharm Biol 48:469–481. https://doi.org/10.3109/13880200903586286
Mariano A, Bigioni I, Scotto d’Abusco A, Baseggio Conrado A, Maina S (2022) Pheomelanin effect on UVB radiation-induced oxidation/nitration of L-tyrosine. Int J Mol Sci 23:267. https://doi.org/10.3390/ijms23010267
MfotieNjoya E, Ndemangou B, Akinyelu J, Munvera AM, Chukwuma CI (2023) In vitro antiproliferative, anti-inflammatory effects and molecular docking studies of natural compounds isolated from Sarcocephalus pobeguinii (Hua ex Pobég). Front Pharmacol 14:1205414. https://doi.org/10.3389/fphar.2023.1205414
Michalak M, Pierzak M, Kręcisz B, Suliga E (2021) Bioactive compounds for skin health: a review. Nutrients 13:203. https://doi.org/10.3390/nu13010203
Article PubMed PubMed Central CAS Google Scholar
Ou Z, Zhao J, Zhu L, Huang L, Ma Y (2019) Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed Pharmacother 118:109347. https://doi.org/10.1016/j.biopha.2019.109347
Article PubMed CAS Google Scholar
Pinto MC, Tejeda A, Duque AL, Macías P (2007) Determination of lipoxygenase activity in plant extracts using a modified ferrous oxidation-xylenol orange assay. J Agric Food Chem 55:5956–5959. https://doi.org/10.1021/jf070537x
Article PubMed CAS Google Scholar
Rawal K, Khurana T, Sharma H, Verma S, Gupta S, Kubba C, Strych U, Hotez PJ, Bottazzi ME (2019) An extensive survey of molecular docking tools and their applications using text mining and deep curation strategies. PeerJ Preprints 7:e27538v1. https://doi.org/10.7287/peerj.preprints.27538v1
Taofiq O, Heleno SA, Calhelha RC, Alves MC, Barros L (2016) Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. Mol Basel Switz 21:1372. https://doi.org/10.3390/molecules21101372
Téné D-G, Abderamane B, Kamdem MHK, Diboue PHB, Melogmo YKD (2022) A new xanthonolignoid and other constituents of Psorospermum aurantiacum (Hypericaceae) stems with antibacterial and antioxidant activities. South Afr J Bot 150:106–112. https://doi.org/10.1016/j.sajb.2022.07.012
Tiani GM, Ahmed I, Krohn K, Green IR, Nkengfack AE (2013) Kenganthranol F, a new anthranol from Psorospermum aurantiacum. Nat Prod Commun 8:103–104
Trębacz H, Barzycka A (2023) Mechanical properties and functions of elastin: an overview. Biomolecules 13:574. https://doi.org/10.3390/biom13030574
Article PubMed PubMed Central CAS Google Scholar
Xie J, Li M-X, Du Z-Z (2022) Chemical compounds, anti-aging and antibacterial properties of Rosa rugosa Purple branch. Ind Crops Prod 181:114814. https://doi.org/10.1016/j.indcrop.2022.114814
Yim M-J, Lee JM, Choi G, Lee DS, Park WS (2018) Anti-inflammatory potential of Carpomitra costata ethanolic extracts via inhibition of NF- κ B and AP-1 activation in LPS-stimulated RAW264.7 macrophages. Evid Based Complement Alternat Med 2018:914514. https://doi.org/10.1155/2018/6914514
Younis MM, Ayoub IM, Mostafa NM, El Hassab MA, Eldehna WM, Al-Rashood ST, Eldahshan OA (2022) GC/MS Profiling, anti-collagenase, anti-elastase, anti-tyrosinase and anti-hyaluronidase activities of a Stenocarpus sinuatus leaves extract. Plants 11:918. https://doi.org/10.3390/plants11070918
Comments (0)