Microglia contribute to the production of the amyloidogenic ABri peptide in familial British dementia

Akiyama H, Kondo H, Arai T, Ikeda K, Kato M, Iseki E et al (2004) Expression of BRI, the normal precursor of the amyloid protein of familial British dementia, in human brain. Acta Neuropathol 107:53–58. https://doi.org/10.1007/s00401-003-0783-1

Article  CAS  PubMed  Google Scholar 

Arber C, Belder CRS, Tomczuk F, Gabriele R, Buhidma Y, Farrell C et al (2024) The presenilin 1 mutation P436S causes familial Alzheimer’s disease with elevated Aβ43 and atypical clinical manifestations. Alzheimer’s Dement. https://doi.org/10.1002/alz.13904

Article  Google Scholar 

Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey JM et al (2021) Familial Alzheimer’s disease mutations in PSEN1 lead to premature human stem cell neurogenesis. Cell Rep 34:108615. https://doi.org/10.1016/j.celrep.2020.108615

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arber C, Toombs J, Lovejoy C, Ryan NS, Paterson RW, Willumsen N et al (2020) Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry 25:2919–2931. https://doi.org/10.1038/s41380-019-0410-8

Article  PubMed  Google Scholar 

Audo I, Bujakowska K, Orhan E, El Shamieh S, Sennlaub F, Guillonneau X et al (2014) The familial dementia gene revisited: a missense mutation revealed by whole-exome sequencing identifies ITM2B as a candidate gene underlying a novel autosomal dominant retinal dystrophy in a large family. Hum Mol Genet 23:491–501. https://doi.org/10.1093/hmg/ddt439

Article  CAS  PubMed  Google Scholar 

Botía JA, Vandrovcova J, Forabosco P, Guelfi S, D’Sa K, Hardy J et al (2017) An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks. BMC Syst Biol 11:1–16. https://doi.org/10.1186/s12918-017-0420-6

Article  CAS  Google Scholar 

Del Campo M, Teunissen CE (2014) Role of BRI2 in dementia. J Alzheimer’s Dis 40:481–494. https://doi.org/10.3233/JAD-131364

Article  CAS  Google Scholar 

Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N et al (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182:976-991.e19. https://doi.org/10.1016/j.cell.2020.06.038

Article  CAS  PubMed  Google Scholar 

El-Agnaf OMA, Nagala S, Patel BP, Austen BM (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310:157–168. https://doi.org/10.1006/jmbi.2001.4743

Article  CAS  PubMed  Google Scholar 

Fotinopoulou A, Tsachaki M, Vlavaki M, Poulopoulos A, Rostagno A, Frangione B et al (2005) BRI2 interacts with amyloid precursor protein (APP) and regulates amyloid β(Aβ) production. J Biol Chem 280:30768–30772. https://doi.org/10.1074/jbc.C500231200

Article  CAS  PubMed  Google Scholar 

Friedman BA, Srinivasan K, Ayalon G, Meilandt WJ, Lin H, Huntley MA et al (2018) Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 22:832–847. https://doi.org/10.1016/j.celrep.2017.12.066

Article  CAS  PubMed  Google Scholar 

Garcia-Reitboeck P, Phillips A, Piers TM, Villegas-Llerena C, Butler M, Mallach A et al (2018) Human induced pluripotent stem cell-derived microglia-like cells harboring TREM2 missense mutations show specific deficits in phagocytosis. Cell Rep 24:2300–2311. https://doi.org/10.1016/j.celrep.2018.07.094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghiso J, Vidal R, Rostagno A, Miravalle L, Holton JL, Mead S et al (2000) Amyloidogenesis in familial British dementia is associated with a genetics defect on chromosome 13. Ann NY Acad Sci 920:84–92. https://doi.org/10.1111/j.1749-6632.2000.tb06908.x

Article  CAS  PubMed  Google Scholar 

Ghiso JA, Holton J, Miravalle L, Calero M, Lashley T, Vidal R et al (2001) Systemic amyloid deposits in familial British dementia. J Biol Chem 276:43909–43914. https://doi.org/10.1074/jbc.M105956200

Article  CAS  PubMed  Google Scholar 

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS et al (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47:569–576. https://doi.org/10.1038/ng.3259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. https://doi.org/10.1056/nejmoa1211851

Article  CAS  PubMed  Google Scholar 

Guttenplan KA, Weigel MK, Adler DI, Couthouis J, Liddelow SA, Gitler AD et al (2020) Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun 11:3753. https://doi.org/10.1038/s41467-020-17514-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall CE, Yao Z, Choi M, Tyzack GE, Serio A, Luisier R et al (2017) Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Rep 19:1739–1749. https://doi.org/10.1016/j.celrep.2017.05.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardy J, Salih D (2021) TREM2-mediated activation of microglia breaks link between amyloid and tau. Lancet Neurol 20:416–417. https://doi.org/10.1016/S1474-4422(21)00133-2

Article  CAS  PubMed  Google Scholar 

Harris MJ, Lane CA, Coath W, Malone IB, Cash DM, Barnes J et al (2022) Familial British dementia: a clinical and multi-modal imaging case study. J Neurol 269:3926–3930. https://doi.org/10.1007/s00415-022-11036-8

Article  PubMed  Google Scholar 

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–399. https://doi.org/10.1038/nature11405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hochgerner H, Zeisel A, Lönnerberg P, Linnarsson S (2018) Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci 21:290–299. https://doi.org/10.1038/s41593-017-0056-2

Article  CAS  PubMed  Google Scholar 

Hodges AK, Piers TM, Collier D, Cousins O, Pocock JM (2021) Pathways linking Alzheimer’s disease risk genes expressed highly in microglia. Neuroimmunol Neuroinflamm. https://doi.org/10.20517/2347-8659.2020.60

Article  Google Scholar 

Holton JL, Ghiso J, Lashley T, Rostagno A, Guerin CJ, Gibb G et al (2001) Regional distribution of amyloid-Bri deposition and its association with neurofibrillary degeneration in familial British dementia. Am J Pathol 158:515–526. https://doi.org/10.1016/S0002-9440(10)63993-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holton JL, Lashley T, Ghiso J, Braendgaard H, Vidal R, Guerin CJ et al (2002) Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-dan and amyloid-Beta. J Neuropathol Exp Neurol 61:254–267. https://doi.org/10.1093/jnen/61.3.254

Article  CAS  PubMed 

Comments (0)

No login
gif