Performance enhancement of mid-infrared NH3 sensor using 9.06 μm QCL based on spectral optimization and NGO-LSTM model

Lu H, et al. A remote sensor system based on TDLAS technique for ammonia leakage monitoring. Sensors. 2021;21(7):2448. https://doi.org/10.3390/s21072448.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jablonska M. Progress on noble metal-based catalysts dedicated to the selective catalytic ammonia oxidation into nitrogen and water vapor (NH3-SCO). Molecules. 2021;26(21):6461. https://doi.org/10.3390/molecules26216461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Renganathan B, Sastikumar D, Gobi G, Yogamalar NR, Bose AC. Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides. Sens Actuators b-chemical. 2011;156(1):263–70. https://doi.org/10.1016/j.snb.2011.04.031.

Article  CAS  Google Scholar 

Sampaolo A, et al. Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: a review. Anal Chim Acta. 2022;1202:338894. https://doi.org/10.1016/j.aca.2021.338894.

Article  CAS  PubMed  Google Scholar 

Zhang J, et al. Single-entity electrochemistry unveils dynamic transformation during tandem catalysis of Cu2O and Co3O4 for converting NO3<SUP>-</SUP> to NH3. Angewandte Chemie-International Edition. 2023;62(8):e202214830. https://doi.org/10.1002/anie.202214830.

Article  CAS  PubMed  Google Scholar 

Li G, et al. A near-infrared multi-gas sensor based on IWTD-CEEMDAN and WOA-BiLSTM for detection of CH4 and NH3 leaked in industrial production. Infr Phys Technol. 2023;131:104695. https://doi.org/10.1016/j.infrared.2023.104695.

Article  CAS  Google Scholar 

Mohammed HA, Rashid SA, Bakar MHA, Anas SBA, Mahdi MA, Yaacob MH. Fabrication and characterizations of a novel etched-tapered single mode optical fiber ammonia sensors integrating PANI/GNF nanocomposite. Sensors Actuators B Chem. 2019;287:71–7. https://doi.org/10.1016/j.snb.2019.01.115.

Article  CAS  Google Scholar 

Lu Q, et al. Mixed-potential ammonia sensor using Ag decorated FeVO4 sensing electrode for automobile in-situ exhaust environment monitoring. Sens Actuat B Chem. Dec.2021;348:130697. https://doi.org/10.1016/j.snb.2021.130697.

Article  CAS  Google Scholar 

Li J, Yu B, Zhao W, Chen W. A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl Spectr Rev. 2014;49(8):666–91. https://doi.org/10.1080/05704928.2014.903376.

Article  CAS  Google Scholar 

Wilson PRJ, et al. Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters. Nanosc Res Lett. 2011;6:168. https://doi.org/10.1186/1556-276X-6-168.

Article  CAS  Google Scholar 

Li F, et al. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors. Appl Optics. 2011;50(36):6697–707. https://doi.org/10.1364/AO.50.006697.

Article  CAS  Google Scholar 

Li F, Yu X, Cai W, Ma L. Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows. Appl Optics. 2012;51(20):4788–97. https://doi.org/10.1364/AO.51.004788.

Article  Google Scholar 

Qu Z, Werhahn O, Ebert V. Thermal boundary layer effects on line-of-sight tunable diode laser absorption spectroscopy (TDLAS) gas concentration measurements. Appl Spectrosc. 2018;72(6):853–62. https://doi.org/10.1177/0003702817752112.

Article  CAS  PubMed  Google Scholar 

Rao W, Xin M, Song J, Feng G. Resolution analysis of tunable diode laser absorption spectroscopy system for velocity measurement of the scramjet combustion flow. Optic Eng. 2019;58(11):114101. https://doi.org/10.1117/1.OE.58.11.114101.

Article  Google Scholar 

Liu Z, et al. Midinfrared sensor system based on tunable laser absorption spectroscopy for dissolved carbon dioxide analysis in the South China Sea: system-level integration and deployment. Anal Chem. 2020;92(12):8178–85. https://doi.org/10.1021/acs.analchem.0c00327.

Article  CAS  PubMed  Google Scholar 

Li G, et al. Performance enhancement of a near-infrared NH3 sensor based on PSO-LSSVM for denitrification industrial process. Infr Phys Technol. 2022;125:104226. https://doi.org/10.1016/j.infrared.2022.104226.

Article  CAS  Google Scholar 

Yin S, Zou X, Cheng Y, Liu Y. Temperature compensation of laser methane sensor based on a large-scale dataset and the ISSA-BP neural network. Sensors. 2024;24(2):493. https://doi.org/10.3390/s24020493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, Qu Z, Zhang K, Mao W, Ma Y, Fan X. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energ Conv Manag. 2017;136:439–51. https://doi.org/10.1016/j.enconman.2017.01.022.

Article  Google Scholar 

Hassan AR, Haque MA (2016) Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine. Biomed Phys Eng Expr 2. https://api.semanticscholar.org/CorpusID:57126755

Zhou Z, Zhang J, Cheng R, Rui Y, Cai X, Chen L. Improving purity of blasting vibration signals using advanced empirical mode decomposition and Wavelet packet technique. Appl Acoust. 2022;201:109097. https://doi.org/10.1016/j.apacoust.2022.109097.

Article  Google Scholar 

Shu X, Zhang L, Sun Y, Tang J. Host-parasite: graph LSTM-in-LSTM for group activity recognition. IEEE Trans Neur Netw Learn Syst. 2021;32(2):663–74. https://doi.org/10.1109/TNNLS.2020.2978942.

Article  Google Scholar 

Ratcliff R. Modeling response signal and response time data. Cognit Psychol. 2006;53(3):195–237. https://doi.org/10.1016/j.cogpsych.2005.10.002.

Article  PubMed  Google Scholar 

Yang C, Jiang Y, Liu Y, Liu S, Liu F. A novel model for runoff prediction based on the ICEEMDAN-NGO-LSTM coupling. Environ Sci Poll Res. 2023;30(34):82179–88. https://doi.org/10.1007/s11356-023-28191-8.

Article  Google Scholar 

Comments (0)

No login
gif