Md. Rokibul Hasan Bhuiyan, Abdullah Al Mamun, Bishal Sharker, Md. Sadikuj Jaman. Anticancer activity and therapeutic uses of catechins on breast, prostate and lung cancer: Future perspective and clinical proofs. Jour of Clin Cas Rep, Med Imag and Heal Sci. 2023;3:3 https://doi.org/10.55920/JCRMHS.2023.03.001118
Jaman S, Md. Islam N, Maniruzzaman, Hossain F, Bhuiyan RH and Emaul N. Preventive and therapeutic effect of ellagic acid, sulforphane and ursolic acid on colon cancer: from cellular response to molecular mechanism of action with future perspectives. International Journal of Clinical and Medical Case Reports.2023;1–13
Sadikuj Jaman Md, Mamun AA, Bishal Sharker M, Rakib MM, Rased Rana M, Nahid Hasan M, Bhuiyan RH (2023) Curcumin, diallyl sulphide, quercetin and gallic acid uses as anticancer and therapeutic agents for breast cancer: current strategies and future perspectives. European J Med Health Sci 5:32–48
Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2(2):143–148. https://doi.org/10.1038/nrc723
Article CAS PubMed Google Scholar
Jaman S, Rezwan S, Alam S, Islam R, Husna AU, Sayeed S (2017) Association of mean platelet volume and platelet distribution width with HbA1c. J Endocrinol Diabetes 4:1–6. https://doi.org/10.15226/2374-6890/4/4/00183
Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129. https://doi.org/10.1038/nrd4510
Article CAS PubMed Google Scholar
Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325(5937):161–165. https://doi.org/10.1126/science.1168243
Article CAS PubMed Google Scholar
Sadikuj Jaman Md, Abu Sayeed Md (2018) Ellagic acid, sulphoraphan, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives. Breast Cancer 25:517
Chen M-J, Cheng Y-M, Chen C-C, Chen Y-C, Shen C-J (2017) MiR-148a and miR-152 reduce tamoxifen resistance in ER+ breast cancer via downregulating ALCAM. Biochem Biophys Res Commun 483(2):840–846. https://doi.org/10.1016/j.bbrc.2017.01.012
Article CAS PubMed Google Scholar
Sengupta D, Deb M, Rath SK, Kar S, Parbin S, Pradhan N, Patra SK (2016) DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Experiment Cell Res. 346(2):176–187. https://doi.org/10.1016/j.yexcr.2016.07.023
Jiang CF, Xie YX, Qian YC et al (2021) TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int 21:542. https://doi.org/10.1186/s12935-021-02235-w
Article CAS PubMed PubMed Central Google Scholar
Anaya-Ruiz M, Cebada J, Delgado-Lopez G, Sanchez-Vazquez ML, Perez-Santos M (2013) MiR-153 silencing induces apoptosis in the MDA-MB-231 breast cancer cell line. Asian Pacific J Cancer Prevent. https://doi.org/10.7314/apjcp.2013.14.5.2983
Liang H, Xiao J, Zhou Z et al (2018) Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene 37:1961–1975. https://doi.org/10.1038/s41388-017-0089-8
Article CAS PubMed PubMed Central Google Scholar
Cheng C-W, Liao W-L, Chen P-M, Jyh-Cherng Yu, Shiau H-P, Hsieh Y-H, Lee H-J, Cheng Y-C, Pei-Ei Wu, Shen C-Y (2021) MiR-139 modulates cancer stem cell function of human breast cancer through targeting CXCR4. Cancers 13(11):2582. https://doi.org/10.3390/cancers13112582
Article CAS PubMed PubMed Central Google Scholar
Hoppe R, Achinger-Kawecka J, Winter S, Fritz P, Lo W-Y, Schroth W, Brauch H (2013) Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur J Cancer 49(17):3598–3608. https://doi.org/10.1016/j.ejca.2013.07.145
Article CAS PubMed Google Scholar
Purohit PK, Edwards R, Tokatlidis K, Saini N (2019) MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biol 16(7):918–929. https://doi.org/10.1080/15476286.2019.1600999
Article PubMed PubMed Central Google Scholar
Igglezou M, Vareli K, Georgiou GK, Sainis I, Briasoulis E (2014) Kinetics of circulating levels of miR-195, miR-155 and miR-21 in patients with breast cancer undergoing mastectomy. Anticancer Res 34(12):7443–7447
Yin R, Guo Le, Jingya Gu, Li C, Zhang W (2018) Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol 97:43–51. https://doi.org/10.1016/j.biocel.2018.02.005
Article CAS PubMed Google Scholar
Fang C, Wang F-B, Li Y, Zeng X-T (2016) Down-regulation of miR-199b-5p is correlated with poor prognosis for breast cancer patients. Biomed Pharmacother 84:1189–1193. https://doi.org/10.1016/j.biopha.2016.10.006
Article CAS PubMed Google Scholar
Cheng S, Zhang Z, Hu C, Xing N, Xia Y, Pang B (2020) Pristimerin suppressed breast cancer progression via miR-542-5p/DUB3 Axis. Onco Targets Ther 7(13):6651–6660. https://doi.org/10.2147/OTT.S257329
Lyu H, Wang S, Huang J, Wang B, He Z, Liu B (2018) Survivin-targeting miR-542-3p overcomes HER3 signaling-induced chemoresistance and enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer. Cancer Lett 420:97–108. https://doi.org/10.1016/j.canlet.2018.01.065
Article CAS PubMed PubMed Central Google Scholar
Shen L, Li J, Xu L, Ma J, Li H, Xiao X, Zhao J, Fang L (2012) miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med 3(3):475–480. https://doi.org/10.3892/etm.2011.428
Article CAS PubMed Google Scholar
Deng X, Zhao Y, Wang B (2015) miR-519d-mediated downregulation of STAT3 suppresses breast cancer progression. Oncol Rep 34(4):2188–2194. https://doi.org/10.3892/or.2015.4160
Article CAS PubMed Google Scholar
Danza K, De Summa S, Pinto R, Pilato B, Palumbo O, Merla G, Simone G, Tommasi S (2015) MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis. Oncotarget 1(6):471–483. https://doi.org/10.18632/oncotarget.2509
Muluhngwi P, Klinge CM (2021) Identification and roles of miR-29b-1-3p and miR29a-3p-regulated and non-regulated lncRNAs in endocrine-sensitive and resistant breast cancer cells. Cancers 13(14):3530. https://doi.org/10.3390/cancers13143530
Article CAS PubMed PubMed Central Google Scholar
Zhu Q, Zhang X, Zai H-Y, Jiang W, Zhang K-J, Yu-Qiong He YuHu (2021) circSLC8A1 sponges miR-671 to regulate breast cancer tumorigenesis via PTEN/PI3k/Akt pathway. Genomics 113(1):398–410. https://doi.org/10.1016/j.ygeno.2020.12.006
Article CAS PubMed Google Scholar
Jaman MS, Rahaman MS, Swarma RR, Mahato J, Siddique MAE, Ayeshasiddika M (2018) Diabetes and red blood cell parameters. Ann Clin Endocrinol Metabol 2:001–009. https://doi.org/10.29328/journal.acem.1001004
Li X, Zhang R, Liu Z, Li S, Xu H (2017) The genetic variants in the PTEN/PI3K/AKT pathway predict susceptibility and CE (A) F chemotherapy response to breast cancer and clinical outcomes. Oncotarget 21(8):20252–20265. https://doi.org/10.18632/oncotarget.15690
Zhang X-Y, Mao L (2021) Circular RNA Circ_0000442 acts as a sponge of MiR-148b-3p to suppress breast cancer via PTEN/PI3K/Akt signaling pathway. Gene 766:145113
Article CAS PubMed Google Scholar
Wang F, Li L, Chen Z, Zhu M, Gu Y (2016) MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int J Mol Med 37(5):1421–1428. https://doi.org/10.3892/ijmm.2016.2518
Article CAS PubMed Google Scholar
Wang L-L, Hao S, Zhang S, Guo L-J, Chun-Yan Hu, Zhang G, Gao Bo, Zhao J-J, Jiang Y, Tian W-G, Wang J, Luo D-L (2017) PTEN/PI3K/AKT protein expression is related to clinicopathological features and prognosis in breast cancer with axillary lymph node metastases. Hum Pathol 61:49–57. https://doi.org/10.1016/j.humpath.2016.07.040
Comments (0)