Kontogeorgos G (2021) Update on pituitary adenomas in the 2017 world health organization classification: innovations and perspectives. Horm -Int J Endocrinol Metab 20(2):287–291. https://doi.org/10.1007/s42000-020-00269-9
Schaff LR, Mellinghoff IK (2023) Glioblastoma and other primary brain malignancies in adults: a review. JAMA 329(7):574–587. https://doi.org/10.1001/jama.2023.0023
Article PubMed PubMed Central Google Scholar
Luo C, Song K, Wu S, Hameed N, Kudulaiti N, Xu H, Qin ZY, Wu JS (2021) The prognosis of glioblastoma: a large, multifactorial study. Br J Neurosurg 35(5):555–561. https://doi.org/10.1080/02688697.2021.1907306
Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Koscinski J, Graczyk P, Halas T, Lewandowska AM, Czepczynski R, Ruchala M (2023) Glioblastoma multiforme: the latest diagnostics and treatment techniques. Pharmacology 108(5):423–431. https://doi.org/10.1159/000531319
Article CAS PubMed Google Scholar
Minniti G, Niyazi M, Alongi F, Navarria P, Belka C (2021) Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 16(1):36. https://doi.org/10.1186/s13014-021-01767-9
Article PubMed PubMed Central Google Scholar
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM (2022) Epigenetics of glioblastoma multiforme: from molecular mechanisms to therapeutic approaches. Semin Cancer Biol 83:100–120. https://doi.org/10.1016/j.semcancer.2020.12.015
Article CAS PubMed Google Scholar
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y (2021) The role of m6a modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):74. https://doi.org/10.1038/s41392-020-00450-x
Article CAS PubMed PubMed Central Google Scholar
Sun T, Wu R, Ming L (2019) The role of m6a rna methylation in cancer. Biomed Pharmacother 112:108613. https://doi.org/10.1016/j.biopha.2019.108613
Article CAS PubMed Google Scholar
Chen F, Xie X, Chao M, Cao H, Wang L (2022) The potential value of m6a rna methylation in the development of cancers focus on malignant glioma. Front Immunol 13:917153. https://doi.org/10.3389/fimmu.2022.917153
Article CAS PubMed PubMed Central Google Scholar
Zhang S, Zhao S, Qi Y, Li B, Wang H, Pan Z, Xue H, Jin C, Qiu W, Chen Z, Guo Q, Fan Y, Xu J, Gao Z, Wang S, Guo X, Deng L, Ni S, Xue F, Wang J, Zhao R, Li G (2022) Spi1-induced downregulation of fto promotes gbm progression by regulating pri-mir-10a processing in an m6a-dependent manner. Mol Ther Nucleic Acids 27:699–717. https://doi.org/10.1016/j.omtn.2021.12.035
Article CAS PubMed PubMed Central Google Scholar
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, Riggs AD, He C, Shi Y (2017) M(6)a rna methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18(11):2622–2634. https://doi.org/10.1016/j.celrep.2017.02.059
Article CAS PubMed PubMed Central Google Scholar
Du P, Meng L, Liao X, Liu Y, Mo X, Gong M, Liao Y (2023) The mir-27a-3p/fto axis modifies hypoxia-induced malignant behaviors of glioma cells. Acta Biochim Biophys Sin 55(1):103–116. https://doi.org/10.3724/abbs.2023002
Article CAS PubMed PubMed Central Google Scholar
Tsuboi K, Bachovchin DA, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Cravatt BF, Hodder P, Rosen H (2010) Optimization and characterization of an inhibitor for glutathione s-tranferase omega 1 (gsto1)
Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, Rosner MH, Chrunyk BA, Perregaux DE, Gabel CA, Geoghegan KF, Pandit J (2000) Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem 275(32):24798–24806. https://doi.org/10.1074/jbc.M001706200
Article CAS PubMed Google Scholar
Menon D, Coll R, O’Neill LA, Board PG (2014) Glutathione transferase omega 1 is required for the lipopolysaccharide-stimulated induction of nadph oxidase 1 and the production of reactive oxygen species in macrophages. Free Radic Biol Med 73:318–327. https://doi.org/10.1016/j.freeradbiomed.2014.05.020
Article CAS PubMed Google Scholar
Wang LK, Yue HL, Peng XJ, Zhang SJ (2019) Gsto1 regards as a meritorious regulator in cutaneous malignant melanoma cells. Mol Cell Probes 48:101449. https://doi.org/10.1016/j.mcp.2019.101449
Article CAS PubMed Google Scholar
Sokulsky LA, Goggins B, Sherwin S, Eyers F, Kaiko GE, Board PG, Keely S, Yang M, Foster PS (2020) Gsto1-1 is an upstream suppressor of m2 macrophage skewing and hif-1alpha-induced eosinophilic airway inflammation. Clin Exp Allergy 50(5):609–624. https://doi.org/10.1111/cea.13582
Article CAS PubMed Google Scholar
Paul S, Bhardwaj M, Kang SC (2022) Gsto1 confers drug resistance in hct–116 colon cancer cells through an interaction with tnfalphaip3/a20. Int J Oncol 61(5). https://doi.org/10.3892/ijo.2022.5426
Yuan F, Cai X, Cong Z, Wang Y, Geng Y, Aili Y, Du C, Zhu J, Yang J, Tang C, Zhang A, Zhao S, Ma C (2022) Roles of the m(6)a modification of rna in the glioblastoma microenvironment as revealed by single-cell analyses. Front Immunol 13:798583. https://doi.org/10.3389/fimmu.2022.798583
Article CAS PubMed PubMed Central Google Scholar
Dong Z, Cui H (2020) The emerging roles of rna modifications in glioblastoma. Cancers 12(3). https://doi.org/10.3390/cancers12030736
Fan Y, Yan D, Ma L, Liu X, Luo G, Hu Y, Kou X (2024) Alkbh5 is a prognostic factor and promotes the angiogenesis of glioblastoma. Sci Rep 14(1):1303. https://doi.org/10.1038/s41598-024-51994-9
Article CAS PubMed PubMed Central Google Scholar
Yin J, Ding F, Cheng Z, Ge X, Li Y, Zeng A, Zhang J, Yan W, Shi Z, Qian X, You Y, Ding Z, Ji J, Wang X (2023) Mettl3-mediated m6a modification of linc00839 maintains glioma stem cells and radiation resistance by activating wnt/beta-catenin signaling. Cell Death Dis 14(7):417. https://doi.org/10.1038/s41419-023-05933-7
Article CAS PubMed PubMed Central Google Scholar
Ji Q, Guo Y, Li Z, Zhang X (2024) Wtap regulates the production of reactive oxygen species, promotes malignant progression, and is closely related to the tumor microenvironment in glioblastoma. Aging 16(6):5601–5617. https://doi.org/10.18632/aging.205666
Article CAS PubMed PubMed Central Google Scholar
Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, Yang S, Liu J, Zhang J (2022) Insights into n6-methyladenosine and programmed cell death in cancer. Mol Cancer 21(1):32. https://doi.org/10.1186/s12943-022-01508-w
Article CAS PubMed PubMed Central Google Scholar
Pan YC, Chu PY, Lin CC, Hsieh CY, Hsu WY, Shyur LF, Yang JC, Chang WC, Wu YC (2024) Glutathione s-transferase omega class 1 (gsto1)-associated large extracellular vesicles are involved in tumor-associated macrophage-mediated cisplatin resistance in bladder cancer. Mol Oncol. https://doi.org/10.1002/1878-0261.13659
Article PubMed PubMed Central Google Scholar
Yan XD, Pan LY, Yuan Y, Lang JH, Mao N (2007) Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines. J Proteome Res 6(2):772–780. https://doi.org/10.1021/pr060402r
Article CAS PubMed Google Scholar
Wang K, Zhang FL, Jia W (2021) Glutathione s–transferase omega 1 promotes the proliferation, migration and invasion, and inhibits the apoptosis of non–small cell lung cancer cells, via the jak/stat3 signaling pathway. Mol Med Rep 23(1). https://doi.org/10.3892/mmr.2020.11709
Manupati K, Debnath S, Goswami K, Bhoj PS, Chandak HS, Bahekar SP, Das A (2019) Glutathione s-transferase omega 1 inhibition activates jnk-mediated apoptotic response in breast cancer stem cells. Febs J 286(11):2167–2192. https://doi.org/10.1111/febs.14813
Article CAS PubMed Google Scholar
Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8(4):1332–1341. https://doi.org/10.1021/mp200129p
Comments (0)